A formula is developed to estimate the total mass loss of projectile, based on the assump- tions that the peeling of molten surface layer in projectile nose is the primary cause of mass loss, and the frictional heat i...A formula is developed to estimate the total mass loss of projectile, based on the assump- tions that the peeling of molten surface layer in projectile nose is the primary cause of mass loss, and the frictional heat is totally absorbed by the projectile. Extrapolating this formula to predict the mass loss of local area of projectile, the receding displacement on projectile surface is obtained, which is vertical to the symmetry axis of projectile. Thereby, a finite difference method model is constructed to simulate the variation of projectile shape. The shape of residual projectile, depth of penetration of projectile and its mass loss obtained by calculation are found in good consistency with respective experimental data.展开更多
基金supported by the National Natural Science Foundation of China (11172282)the Science Foundation of China Academy of Engineering Physics(2009A0201009)
文摘A formula is developed to estimate the total mass loss of projectile, based on the assump- tions that the peeling of molten surface layer in projectile nose is the primary cause of mass loss, and the frictional heat is totally absorbed by the projectile. Extrapolating this formula to predict the mass loss of local area of projectile, the receding displacement on projectile surface is obtained, which is vertical to the symmetry axis of projectile. Thereby, a finite difference method model is constructed to simulate the variation of projectile shape. The shape of residual projectile, depth of penetration of projectile and its mass loss obtained by calculation are found in good consistency with respective experimental data.