Based on a combination of morphology and molecular data of ribosomal DNA genes,a new diatom genus Lineaperpetua gen.nov.Yu,You,Kociolek&Wang is described.The features that help define Lineaperpetua at the level of...Based on a combination of morphology and molecular data of ribosomal DNA genes,a new diatom genus Lineaperpetua gen.nov.Yu,You,Kociolek&Wang is described.The features that help define Lineaperpetua at the level of genus include:a tangentially undulated valve face;continuous cribra areolae on the valve interior consisting of pores arranged as strips;single rimoportula located inside the ring of marginal fultoportulae.Additionally,phylogenetic analysis based on nuclear small subunit(SSU)rDNA sequences and nuclear large subunit(LSU)rDNA gene placed the three strains of L.lacustris in a single,monophyletic clade at a considerable sequence distance from the other genera(Thalassiosira,Conticribra,Planktoniella,Shinodiscus,and other genera)belonging to Thalassiosirales.Despite the similarities with some species of Thalassiosira,Conticribra,and Spicaticribra,the suite of features found in Lineaperpetua differentiate it from these other genera.These molecular data and morphological characters suggest an affinity of the new genus to the Thalassiosiraceae.展开更多
Sodium-based storage devices based on conversion-type metal sulfide anodes have attracted great atten-tion due to their multivalent ion redox reaction ability.However,they also suffer from sodium polysul-fides(NaPSs)s...Sodium-based storage devices based on conversion-type metal sulfide anodes have attracted great atten-tion due to their multivalent ion redox reaction ability.However,they also suffer from sodium polysul-fides(NaPSs)shuttling problems during the sluggish Na^(+) redox process,leading to"voltage failure"and rapid capacity decay.Herein,a metal cobalt-doping vanadium disulfide(Co-VS_(2))is proposed to simulta-neously accelerate the electrochemical reaction of VS_(2) and enhance the bidirectional redox of soluble NaPSs.It is found that the strong adsorption of NaPSs by V-Co alloy nanoparticles formed in situ during the conversion reaction of Co-VS_(2) can effectively inhibit the dissolution and shuttle of NaPSs,and ther-modynamically reduce the formation energy barrier of the reaction path to effectively drive the complete conversion reaction,while the metal transition of Co elements enhances reconversion kinetics to achieve high reversibility.Moreover,Co-VS_(2) also produce abundant sulfur vacancies and unsaturated sulfur edge defects,significantly improve ionic/electron diffusion kinetics.Therefore,the Co-VS_(2) anode exhibits ultrahigh rate capability(562 mA h g^(-1) at 5 A g^(-1)),high initial coulombic efficiency(~90%)and 12,000 ultralong cycle life with capacity retention of 90%in sodium-ion batteries(SIBs),as well as impressive energy/power density(118 Wh kg^(-1)/31,250 W kg^(-1))and over 10.000 stable cycles in sodium-ion hybrid capacitors(SIHCs).Moreover,the pouch cell-type SIHC displays a high-energy density of 102 Wh kg^(-1) and exceed 600 stable cycles.This work deepens the understanding of the electrochemical reaction mechanism of conversion-type metal sulfide anodes and provides a valuable solution to the shuttlingofNaPSs inSIBsandSIHCs.展开更多
The dynamic range of the nuclear magnetic resonance gyroscope can be effectively improved through the closedloop control scheme,which is crucial to its application in inertial measurement.This paper presents the analy...The dynamic range of the nuclear magnetic resonance gyroscope can be effectively improved through the closedloop control scheme,which is crucial to its application in inertial measurement.This paper presents the analytical transfer function of Xe closed-loop system in the nuclear magnetic resonance gyroscope considering Rb–Xe coupling effect.It not only considers the dynamic characteristics of the system more comprehensively,but also adds the influence of the practical filters in the gyro signal processing system,which can obtain the accurate response characteristics of signal frequency and amplitude at the same time.The numerical results are compared with an experimentally verified simulation program,which indicate great agreement.The research results of this paper are of great significance to the practical application and development of the nuclear magnetic resonance gyroscope.展开更多
Background: The mechanisms by which acupuncture affects poststroke cognitive impairment (PSCI) remain unclear. Objective: To investigate brain functional network (BFN) changes in patients with PSCI after acupuncture t...Background: The mechanisms by which acupuncture affects poststroke cognitive impairment (PSCI) remain unclear. Objective: To investigate brain functional network (BFN) changes in patients with PSCI after acupuncture therapy. Methods: Twenty-two PSCI patients who underwent acupuncture therapy in our hospital were enrolled as research subjects. Another 14 people matched for age, sex, and education level were included in the normal control (HC) group. All the subjects underwent resting-state functional magnetic resonance imaging (rs-fMRI) scans;the PSCI patients underwent one scan before acupuncture therapy and another after. The network metric difference between PSCI patients and HCs was analyzed via the independent-sample t test, whereas the paired-sample t test was employed to analyze the network metric changes in PSCI patients before vs. after treatment. Results: Small-world network attributes were observed in both groups for sparsities between 0.1 and 0.28. Compared with the HC group, the PSCI group presented significantly lower values for the global topological properties (γ, Cp, and Eloc) of the brain;significantly greater values for the nodal attributes of betweenness centrality in the CUN. L and the HES. R, degree centrality in the SFGdor. L, PCG. L, IPL. L, and HES. R, and nodal local efficiency in the ORBsup. R, ORBsupmed. R, DCG. L, SMG. R, and TPOsup. L;and decreased degree centrality in the MFG. R, IFGoperc. R, and SOG. R. After treatment, PSCI patients presented increased degree centrality in the LING.L, LING.R, and IOG. L and nodal local efficiency in PHG. L, IOG. R, FFG. L, and the HES. L, and decreased betweenness centrality in the PCG. L and CUN. L, degree centrality in the ORBsupmed. R, and nodal local efficiency in ANG. R. Conclusion: Cognitive decline in PSCI patients may be related to BFN disorders;acupuncture therapy may modulate the topological properties of the BFNs of PSCI patients.展开更多
The synthetic microbial community is a synthetic microbial system co-cultured with multiple species, which has the characteristics of clear composition and strong controllability. Compared with a single colony, it can...The synthetic microbial community is a synthetic microbial system co-cultured with multiple species, which has the characteristics of clear composition and strong controllability. Compared with a single colony, it can achieve more complex functions and adapt to the changing environment more easily, so as to meet a wide range of needs. In this paper, the contents and concepts of microbial community and synthetic microbial community are briefly introduced, the principles that should be followed in the construction of microbial community are expounded, the methods and mathematical models used in the construction of synthetic microbial community are introduced, and the applications of synthetic microbial community in various fields are summarized. Finally, the challenges in the research of synthetic microbial communities are briefly described.展开更多
Phthalic acid is a main pollutant, which is also an important reason for the continuous cropping effect of tobacco. In order to degrade the phthalic acid accumulated in the environment and relieve the obstacle effect ...Phthalic acid is a main pollutant, which is also an important reason for the continuous cropping effect of tobacco. In order to degrade the phthalic acid accumulated in the environment and relieve the obstacle effect of tobacco continuous cropping caused by the accumulation of phthalic acid in the soil. In this study, phthalate degrading bacteria B3 is screened from continuous cropping tobacco soil. The results of biochemical identification and 16sDNA comparison show that the homology between degrading bacterium B3 and Enterobacter sp. is 99%. At the same time, the growth of Enterobacter hormaechei subsp. B3 and the degradation of phthalic acid under different environmental conditions are studied. The results show that the environment with a temperature of 30˚C, PH of 7, and inoculation amount of not less than 1.2%, which is the optimal growth conditions for Enterobacter sp. B3. In an environment with a concentration of phthalic acid not exceeding 500 mg/L, Enterobacter sp. B3 has a better effect on phthalic acid degradation, and the degradation rate can reach 77% in 7 d. The results of indoor potting experiments on tobacco show that the degradation rate of phthalic acid by Enterobacter B3 in the soil is about 45%, which can reduce the inhibitory effect of phthalic acid on the growth of tobacco seedlings. This study enriches the microbial resources for degrading phthalic acid and provides a theoretical basis for alleviating tobacco continuous cropping obstacles.展开更多
Ralstonia solanacearum, the causative agent of bacterial wilt, is a soil-borne pathogen that poses a widespread threat to plants in the Solanaceae family. To elucidate the mechanism by which limonene exerts its effect...Ralstonia solanacearum, the causative agent of bacterial wilt, is a soil-borne pathogen that poses a widespread threat to plants in the Solanaceae family. To elucidate the mechanism by which limonene exerts its effects on R. solanacearum, we first assessed the impact of limonene on the physiological indicators of the pathogen and subsequently analyzed its transcriptome and metabolome. Our findings indicate that limonene has a potent inhibitory effect on R. solanacearum, and it also suppresses the formation of the bacterial community biofilm. Limonene primarily regulates the terpene biosynthesis pathway in R. solanacearum, thereby potentially affecting signal transduction in the pathogen and disrupting its normal growth and development. These results significantly enhance our understanding of limonene’s response to the induction of bacterial wilt and provide a reference for further prevention and control of R. solanacearum.展开更多
Background Ochratoxin A(OTA)is a mycotoxin widely present in raw food and feed materials and is mainly pro-duced by Aspergillus ochraceus and Penicillium verrucosum.Our previous study showed that OTA principally induc...Background Ochratoxin A(OTA)is a mycotoxin widely present in raw food and feed materials and is mainly pro-duced by Aspergillus ochraceus and Penicillium verrucosum.Our previous study showed that OTA principally induces liver inflammation by causing intestinal flora disorder,especially Bacteroides plebeius(B.plebeius)overgrowth.However,whether OTA or B.plebeius alteration leads to abnormal tryptophan-related metabolism in the intestine and liver is largely unknown.This study aimed to elucidate the metabolic changes in the intestine and liver induced by OTA and the tryptophan-related metabolic pathway in the liver.Materials and methods A total of 30 healthy 1-day-old male Cherry Valley ducks were randomly divided into 2 groups.The control group was given 0.1 mol/L NaHCO3 solution,and the OTA group was given 235μg/kg body weight OTA for 14 consecutive days.Tryptophan metabolites were determined by intestinal chyme metabolomics and liver tryptophan-targeted metabolomics.AMPK-related signaling pathway factors were analyzed by Western blot-ting and mRNA expression.Results Metabolomic analysis of the intestinal chyme showed that OTA treatment resulted in a decrease in intesti-nal nicotinuric acid levels,the downstream product of tryptophan metabolism,which were significantly negatively correlated with B.plebeius abundance.In contrast,OTA induced a significant increase in indole-3-acetamide levels,which were positively correlated with B.plebeius abundance.Simultaneously,OTA decreased the levels of ATP,NAD+and dipeptidase in the liver.Liver tryptophan metabolomics analysis showed that OTA inhibited the kynurenine metabolic pathway and reduced the levels of kynurenine,anthranilic acid and nicotinic acid.Moreover,OTA increased the phosphorylation of AMPK protein and decreased the phosphorylation of mTOR protein.Conclusion OTA decreased the level of nicotinuric acid in the intestinal tract,which was negatively correlated with B.plebeius abundance.The abnormal metabolism of tryptophan led to a deficiency of NAD+and ATP in the liver,which in turn activated the AMPK signaling pathway.Our results provide new insights into the toxic mechanism of OTA,and tryptophan metabolism might be a target for prevention and treatment.展开更多
BACKGROUND As an active ingredient derived from Dioscorea zingiberensis C.H.Wright,deltonin has been reported to show anti-cancer effects in a variety of malignancies.AIM To investigate the role and mechanism of actio...BACKGROUND As an active ingredient derived from Dioscorea zingiberensis C.H.Wright,deltonin has been reported to show anti-cancer effects in a variety of malignancies.AIM To investigate the role and mechanism of action of deltonin in promoting gastric carcinoma(GC)cell apoptosis and chemosensitivity to cisplatin.METHODS The GC cell lines AGS,HGC-27,and MKN-45 were treated with deltonin and then subjected to flow cytometry and 3-(4,5-dimethylthiazol-2-yl)-3,5-diphenyltet-razolium bromide assays for cell apoptosis and viability determination.Western blot analysis was conducted to examine alterations in the expression of apoptosis-related proteins(Bax,Bid,Bad,and Fas),DNA repair-associated proteins(Rad51 and MDM2),and phosphatidylinositol 3-kinase/protein kinase B/mammalian target of the rapamycin(PI3K/AKT/mTOR)and p38-mitogen-activated protein kinase(MAPK)axis proteins.Additionally,the influence of deltonin on GC cell chemosensitivity to cisplatin was evaluated both in vitro and in vivo.RESULTS Deltonin treatment weakened viability,enhanced apoptosis,and dampened DNA repair in GC cell lines in a dose-dependent pattern.Furthermore,deltonin mitigated PI3K,AKT,mTOR,and p38-MAPK phosphorylation.HS-173,an inhibitor of PI3K,attenuated GC cell viability and abolished deltonin inhibition of GC cell viability and PI3K/AKT/mTOR and p38-MAPK pathway activation.Deltonin also promoted the chemosensitivity of GC cells to cisplatin via repressing GC cell proliferation and growth and accelerating apoptosis.CONCLUSION Deltonin can boost the chemosensitivity of GC cells to cisplatin via inactivating p38-MAPK and PI3K/AKT/mTOR signaling.展开更多
基金the Postdoctoral Science Foundation of China(No.2021 M 703434)the National Natural Science Foundation of China(Nos.32100165,32170205)the Natural Science Foundation of Shanghai(No.21 ZR 144730)。
文摘Based on a combination of morphology and molecular data of ribosomal DNA genes,a new diatom genus Lineaperpetua gen.nov.Yu,You,Kociolek&Wang is described.The features that help define Lineaperpetua at the level of genus include:a tangentially undulated valve face;continuous cribra areolae on the valve interior consisting of pores arranged as strips;single rimoportula located inside the ring of marginal fultoportulae.Additionally,phylogenetic analysis based on nuclear small subunit(SSU)rDNA sequences and nuclear large subunit(LSU)rDNA gene placed the three strains of L.lacustris in a single,monophyletic clade at a considerable sequence distance from the other genera(Thalassiosira,Conticribra,Planktoniella,Shinodiscus,and other genera)belonging to Thalassiosirales.Despite the similarities with some species of Thalassiosira,Conticribra,and Spicaticribra,the suite of features found in Lineaperpetua differentiate it from these other genera.These molecular data and morphological characters suggest an affinity of the new genus to the Thalassiosiraceae.
基金supported by the National Natural Science Foundation of China(Grant Nos.52072322,22209137,51604250)the Department of Science and Technology of Sichuan Province(CN)(GrantNos.2022YFG0294,23GJHZ0147,23ZDYF0262)Production-Education Integration Demonstration Project of Sichuan Province"Photovoltaic Industry Production-Education Integration Comprehensive Demonstration Base of Sichuan Province"(Sichuan Financial Education[2022]No.106.n)。
文摘Sodium-based storage devices based on conversion-type metal sulfide anodes have attracted great atten-tion due to their multivalent ion redox reaction ability.However,they also suffer from sodium polysul-fides(NaPSs)shuttling problems during the sluggish Na^(+) redox process,leading to"voltage failure"and rapid capacity decay.Herein,a metal cobalt-doping vanadium disulfide(Co-VS_(2))is proposed to simulta-neously accelerate the electrochemical reaction of VS_(2) and enhance the bidirectional redox of soluble NaPSs.It is found that the strong adsorption of NaPSs by V-Co alloy nanoparticles formed in situ during the conversion reaction of Co-VS_(2) can effectively inhibit the dissolution and shuttle of NaPSs,and ther-modynamically reduce the formation energy barrier of the reaction path to effectively drive the complete conversion reaction,while the metal transition of Co elements enhances reconversion kinetics to achieve high reversibility.Moreover,Co-VS_(2) also produce abundant sulfur vacancies and unsaturated sulfur edge defects,significantly improve ionic/electron diffusion kinetics.Therefore,the Co-VS_(2) anode exhibits ultrahigh rate capability(562 mA h g^(-1) at 5 A g^(-1)),high initial coulombic efficiency(~90%)and 12,000 ultralong cycle life with capacity retention of 90%in sodium-ion batteries(SIBs),as well as impressive energy/power density(118 Wh kg^(-1)/31,250 W kg^(-1))and over 10.000 stable cycles in sodium-ion hybrid capacitors(SIHCs).Moreover,the pouch cell-type SIHC displays a high-energy density of 102 Wh kg^(-1) and exceed 600 stable cycles.This work deepens the understanding of the electrochemical reaction mechanism of conversion-type metal sulfide anodes and provides a valuable solution to the shuttlingofNaPSs inSIBsandSIHCs.
基金the Natural Science Foundation of China(Grant Nos.61701515 and U23B2066)the Nat-ural Science Foundation of Hunan Province,China(Grant No.2021JJ40700)the Research Project of National Uni-versity of Defense Technology(Grant No.ZK22-18).
文摘The dynamic range of the nuclear magnetic resonance gyroscope can be effectively improved through the closedloop control scheme,which is crucial to its application in inertial measurement.This paper presents the analytical transfer function of Xe closed-loop system in the nuclear magnetic resonance gyroscope considering Rb–Xe coupling effect.It not only considers the dynamic characteristics of the system more comprehensively,but also adds the influence of the practical filters in the gyro signal processing system,which can obtain the accurate response characteristics of signal frequency and amplitude at the same time.The numerical results are compared with an experimentally verified simulation program,which indicate great agreement.The research results of this paper are of great significance to the practical application and development of the nuclear magnetic resonance gyroscope.
文摘Background: The mechanisms by which acupuncture affects poststroke cognitive impairment (PSCI) remain unclear. Objective: To investigate brain functional network (BFN) changes in patients with PSCI after acupuncture therapy. Methods: Twenty-two PSCI patients who underwent acupuncture therapy in our hospital were enrolled as research subjects. Another 14 people matched for age, sex, and education level were included in the normal control (HC) group. All the subjects underwent resting-state functional magnetic resonance imaging (rs-fMRI) scans;the PSCI patients underwent one scan before acupuncture therapy and another after. The network metric difference between PSCI patients and HCs was analyzed via the independent-sample t test, whereas the paired-sample t test was employed to analyze the network metric changes in PSCI patients before vs. after treatment. Results: Small-world network attributes were observed in both groups for sparsities between 0.1 and 0.28. Compared with the HC group, the PSCI group presented significantly lower values for the global topological properties (γ, Cp, and Eloc) of the brain;significantly greater values for the nodal attributes of betweenness centrality in the CUN. L and the HES. R, degree centrality in the SFGdor. L, PCG. L, IPL. L, and HES. R, and nodal local efficiency in the ORBsup. R, ORBsupmed. R, DCG. L, SMG. R, and TPOsup. L;and decreased degree centrality in the MFG. R, IFGoperc. R, and SOG. R. After treatment, PSCI patients presented increased degree centrality in the LING.L, LING.R, and IOG. L and nodal local efficiency in PHG. L, IOG. R, FFG. L, and the HES. L, and decreased betweenness centrality in the PCG. L and CUN. L, degree centrality in the ORBsupmed. R, and nodal local efficiency in ANG. R. Conclusion: Cognitive decline in PSCI patients may be related to BFN disorders;acupuncture therapy may modulate the topological properties of the BFNs of PSCI patients.
文摘The synthetic microbial community is a synthetic microbial system co-cultured with multiple species, which has the characteristics of clear composition and strong controllability. Compared with a single colony, it can achieve more complex functions and adapt to the changing environment more easily, so as to meet a wide range of needs. In this paper, the contents and concepts of microbial community and synthetic microbial community are briefly introduced, the principles that should be followed in the construction of microbial community are expounded, the methods and mathematical models used in the construction of synthetic microbial community are introduced, and the applications of synthetic microbial community in various fields are summarized. Finally, the challenges in the research of synthetic microbial communities are briefly described.
文摘Phthalic acid is a main pollutant, which is also an important reason for the continuous cropping effect of tobacco. In order to degrade the phthalic acid accumulated in the environment and relieve the obstacle effect of tobacco continuous cropping caused by the accumulation of phthalic acid in the soil. In this study, phthalate degrading bacteria B3 is screened from continuous cropping tobacco soil. The results of biochemical identification and 16sDNA comparison show that the homology between degrading bacterium B3 and Enterobacter sp. is 99%. At the same time, the growth of Enterobacter hormaechei subsp. B3 and the degradation of phthalic acid under different environmental conditions are studied. The results show that the environment with a temperature of 30˚C, PH of 7, and inoculation amount of not less than 1.2%, which is the optimal growth conditions for Enterobacter sp. B3. In an environment with a concentration of phthalic acid not exceeding 500 mg/L, Enterobacter sp. B3 has a better effect on phthalic acid degradation, and the degradation rate can reach 77% in 7 d. The results of indoor potting experiments on tobacco show that the degradation rate of phthalic acid by Enterobacter B3 in the soil is about 45%, which can reduce the inhibitory effect of phthalic acid on the growth of tobacco seedlings. This study enriches the microbial resources for degrading phthalic acid and provides a theoretical basis for alleviating tobacco continuous cropping obstacles.
文摘Ralstonia solanacearum, the causative agent of bacterial wilt, is a soil-borne pathogen that poses a widespread threat to plants in the Solanaceae family. To elucidate the mechanism by which limonene exerts its effects on R. solanacearum, we first assessed the impact of limonene on the physiological indicators of the pathogen and subsequently analyzed its transcriptome and metabolome. Our findings indicate that limonene has a potent inhibitory effect on R. solanacearum, and it also suppresses the formation of the bacterial community biofilm. Limonene primarily regulates the terpene biosynthesis pathway in R. solanacearum, thereby potentially affecting signal transduction in the pathogen and disrupting its normal growth and development. These results significantly enhance our understanding of limonene’s response to the induction of bacterial wilt and provide a reference for further prevention and control of R. solanacearum.
基金Guangdong Province Natural Science Funds for Distinguished Young Scholar(2022B1515020016)the National Science Fund for Outstanding Young Scholars(32222080)+5 种基金National Key Research Program(2021YFD1300404)National Science Fund Project of China(32072751)Guangdong Basic and Applied Basic Research Foundation(2022B1515130003)China Agriculture Research System(CARS-42-15)Modern Agricultural Industrial Technology System Innovation Team of Guangdong Province(2022KJ137)Natural Science Foundation of Guangdong Province(2019B1515210012).
文摘Background Ochratoxin A(OTA)is a mycotoxin widely present in raw food and feed materials and is mainly pro-duced by Aspergillus ochraceus and Penicillium verrucosum.Our previous study showed that OTA principally induces liver inflammation by causing intestinal flora disorder,especially Bacteroides plebeius(B.plebeius)overgrowth.However,whether OTA or B.plebeius alteration leads to abnormal tryptophan-related metabolism in the intestine and liver is largely unknown.This study aimed to elucidate the metabolic changes in the intestine and liver induced by OTA and the tryptophan-related metabolic pathway in the liver.Materials and methods A total of 30 healthy 1-day-old male Cherry Valley ducks were randomly divided into 2 groups.The control group was given 0.1 mol/L NaHCO3 solution,and the OTA group was given 235μg/kg body weight OTA for 14 consecutive days.Tryptophan metabolites were determined by intestinal chyme metabolomics and liver tryptophan-targeted metabolomics.AMPK-related signaling pathway factors were analyzed by Western blot-ting and mRNA expression.Results Metabolomic analysis of the intestinal chyme showed that OTA treatment resulted in a decrease in intesti-nal nicotinuric acid levels,the downstream product of tryptophan metabolism,which were significantly negatively correlated with B.plebeius abundance.In contrast,OTA induced a significant increase in indole-3-acetamide levels,which were positively correlated with B.plebeius abundance.Simultaneously,OTA decreased the levels of ATP,NAD+and dipeptidase in the liver.Liver tryptophan metabolomics analysis showed that OTA inhibited the kynurenine metabolic pathway and reduced the levels of kynurenine,anthranilic acid and nicotinic acid.Moreover,OTA increased the phosphorylation of AMPK protein and decreased the phosphorylation of mTOR protein.Conclusion OTA decreased the level of nicotinuric acid in the intestinal tract,which was negatively correlated with B.plebeius abundance.The abnormal metabolism of tryptophan led to a deficiency of NAD+and ATP in the liver,which in turn activated the AMPK signaling pathway.Our results provide new insights into the toxic mechanism of OTA,and tryptophan metabolism might be a target for prevention and treatment.
文摘BACKGROUND As an active ingredient derived from Dioscorea zingiberensis C.H.Wright,deltonin has been reported to show anti-cancer effects in a variety of malignancies.AIM To investigate the role and mechanism of action of deltonin in promoting gastric carcinoma(GC)cell apoptosis and chemosensitivity to cisplatin.METHODS The GC cell lines AGS,HGC-27,and MKN-45 were treated with deltonin and then subjected to flow cytometry and 3-(4,5-dimethylthiazol-2-yl)-3,5-diphenyltet-razolium bromide assays for cell apoptosis and viability determination.Western blot analysis was conducted to examine alterations in the expression of apoptosis-related proteins(Bax,Bid,Bad,and Fas),DNA repair-associated proteins(Rad51 and MDM2),and phosphatidylinositol 3-kinase/protein kinase B/mammalian target of the rapamycin(PI3K/AKT/mTOR)and p38-mitogen-activated protein kinase(MAPK)axis proteins.Additionally,the influence of deltonin on GC cell chemosensitivity to cisplatin was evaluated both in vitro and in vivo.RESULTS Deltonin treatment weakened viability,enhanced apoptosis,and dampened DNA repair in GC cell lines in a dose-dependent pattern.Furthermore,deltonin mitigated PI3K,AKT,mTOR,and p38-MAPK phosphorylation.HS-173,an inhibitor of PI3K,attenuated GC cell viability and abolished deltonin inhibition of GC cell viability and PI3K/AKT/mTOR and p38-MAPK pathway activation.Deltonin also promoted the chemosensitivity of GC cells to cisplatin via repressing GC cell proliferation and growth and accelerating apoptosis.CONCLUSION Deltonin can boost the chemosensitivity of GC cells to cisplatin via inactivating p38-MAPK and PI3K/AKT/mTOR signaling.