The surface accuracy of a radio telescope is directly related to its operational efficiency and detection sensitivity.This is crucial under high-frequency observation conditions,where surface shape errors need to be c...The surface accuracy of a radio telescope is directly related to its operational efficiency and detection sensitivity.This is crucial under high-frequency observation conditions,where surface shape errors need to be controlled to within 1/16 of the working wavelength.In addition,the primary reflector of large radio telescopes is subject to dynamic deformation,caused by factors such as gravity and thermal effects.This paper presents a method for detecting the surface shape of radio telescopes using radio interferometry techniques combined with active reflector adjustment technology.This enables accurate assessment and correction of surface errors,ensuring the electrical performance of the radio telescope.This study investigates the practical applications of high-precision measurement techniques,such as microwave holography,out-of-focus holography,and wavefront distortion methods at the Tianma 65 m radio telescope(TMRT).Furthermore,the study presents the construction method of gravity models at different elevation angles and demonstrates the efficacy of the active reflector model.The results of the measurements indicate that the application of these methods to the TMRT has led to a notable enhancement of the accuracy of the primary reflector and a substantial improvement in efficiency in the Q-band.Through a process of iterative measurements and adjustments,the surface shape error is ultimately reduced to 0.28 mm root mean square(RMS).展开更多
Background:Anoplophora glabripennis(Motschulsky),commonly known as Asian longhorned beetle(ALB),is a wood-boring insect that can cause lethal infestation to multiple borer leaf trees.In Gansu Province,northwest China,...Background:Anoplophora glabripennis(Motschulsky),commonly known as Asian longhorned beetle(ALB),is a wood-boring insect that can cause lethal infestation to multiple borer leaf trees.In Gansu Province,northwest China,ALB has caused a large number of deaths of a local tree species Populus gansuensis.The damaged area belongs to Gobi desert where every single tree is artificially planted and is extremely difficult to cultivate.Therefore,the monitoring of the ALB infestation at the individual tree level in the landscape is necessary.Moreover,the determination of an abnormal phenotype that can be obtained directly from remote-sensing images to predict the damage degree can greatly reduce the cost of field investigation and management.Methods:Multispectral WorldView-2(WV-2)images and 5 tree physiological factors were collected as experimental materials.One-way ANOVA of the tree’s physiological factors helped in determining the phenotype to predict damage degrees.The original bands of WV-2 and derived vegetation indices were used as reference data to construct the dataset of a prediction model.Variance inflation factor and stepwise regression analyses were used to eliminate collinearity and redundancy.Finally,three machine learning algorithms,i.e.,Random Forest(RF),Support Vector Machine(SVM),Classification And Regression Tree(CART),were applied and compared to find the best classifier for predicting the damage stage of individual P.gansuensis.Results:The confusion matrix of RF achieved the highest overall classification accuracy(86.2%)and the highest Kappa index value(0.804),indicating the potential of using WV-2 imaging to accurately detect damage stages of individual trees.In addition,the canopy color was found to be positively correlated with P.gansuensis’damage stages.Conclusions:A novel method was developed by combining WV-2 and tree physiological index for semi-automatic classification of three damage stages of P.gansuensis infested with ALB.The canopy color was determined as an abnormal phenotype that could be directly assessed using remote-sensing images at the tree level to predict the damage degree.These tools are highly applicable for driving quick and effective measures to reduce damage to pure poplar forests in Gansu Province,China.展开更多
On-chip stimulated Brillouin scattering(SBS)has attracted extensive attention by introducing acousto-optic coupling interactions in all-optical signal processing systems.A series of chip-level applications such as Bri...On-chip stimulated Brillouin scattering(SBS)has attracted extensive attention by introducing acousto-optic coupling interactions in all-optical signal processing systems.A series of chip-level applications such as Brillouin lasers,amplifiers,gyroscopes,filters,and nonreciprocal devices are realized based on Brillouin acousto-optic interaction.Here,we first introduce the fundamental principle of SBS in integrated photonics and a method for calculating Brillouin gain;then we illustrate the Brillouin effect on different material platforms with diverse applications.Finally,we make a concise conclusion and offer prospects on the future developments of on-chip SBS.展开更多
Zn-air batteries(ZABs)as a potential energy conversion system suffer from low power density(typically≤200 mW·cm^(−2)).Recently,three-dimensional(3D)integrated air cathodes have demonstrated promising performance...Zn-air batteries(ZABs)as a potential energy conversion system suffer from low power density(typically≤200 mW·cm^(−2)).Recently,three-dimensional(3D)integrated air cathodes have demonstrated promising performance over traditional twodimensional(2D)plane ones,which is ascribed to enriched active sites and enhanced diffusion,but without experimental evidence.Herein,we applied a bubble pump consumption chronoamperometry(BPCC)method to quantitatively identify the gas diffusion coefficient(D)and effective catalytic sites density(ρEC)of the integrated air cathodes for ZABs.Furthermore,the D andρEC values can instruct consequent optimization on the growth of Co embedded N-doped carbon nanotubes(CoNCNTs)on carbon fiber paper(CFP)and aerophilicity tuning,giving 4 times D and 1.3 timesρEC over the conventional 2D Pt/C-CFP counterparts.As a result,using the CoNCNTs with half-wave potential of merely 0.78 V vs.RHE(Pt/C:0.89 V vs.RHE),the superaerophilic CoNCNTs-CFP cathode-based ZABs exhibited a superior peak power density of 245 mW·cm^(−2) over traditional 2D Pt/C-CFP counterparts,breaking the threshold of 200 mW·cm^(−2).This work reveals the intrinsic feature of the 3D integrated air cathodes by yielding exact D andρEC values,and demonstrates the feasibility of BPCC method for the optimization of integrated electrodes,bypassing trial-and-error strategy.展开更多
Narrow-bandgap n-type polymers are essential for advancing the development of all-polymer solar cells(all-PSCs).Herein,we developed a novel polymer acceptor PNT withπ-extended 2-(3-oxo-2,3-dihydro-1H-cyclopenta[b]nap...Narrow-bandgap n-type polymers are essential for advancing the development of all-polymer solar cells(all-PSCs).Herein,we developed a novel polymer acceptor PNT withπ-extended 2-(3-oxo-2,3-dihydro-1H-cyclopenta[b]naphthalen-1-ylidene)malononitrile(CPNM)end groups.Compared to commonly used 2-(3-oxo-2,3-dihydro-1H-cyclopenta[b]naphthalen-1ylidene)malononitrile(IC)units,CPNM units have a further extended fused ring,providing the PNT polymer with extended absorption into the near-IR region(903 nm)and exhibiting a narrow optical bandgap(1.37 eV).Furthermore,PNT exhibits a high electron mobility(6.79×10^(−4) cm^(2)·V^(−1)·S^(−1))and a relatively high-lying lowest unoccupied molecular orbital(LUMO)energy level of−3.80 eV.When blended with PBDB-T,all-PSC achieves a power conversion efficiency(PCE)of 13.7%and a high short-circuit current density(JSC)of 24.4 mA·cm^(−2),mainly attributed to broad absorption(600—900 nm)and efficient charge separation and collection.Our study provides a promising polymer acceptor for all-PSCs and demonstrates thatπ-extended CPNM units are important to achieve high-performance for all-PSCs.展开更多
The development of polymerized fused-ring small molecule acceptors(FRA-PAs) has boosted the performance of all-polymer solar cells(all-PSCs).However,these FRA-PAs suffer from lengthy synthesis steps and high productio...The development of polymerized fused-ring small molecule acceptors(FRA-PAs) has boosted the performance of all-polymer solar cells(all-PSCs).However,these FRA-PAs suffer from lengthy synthesis steps and high production costs due to the high degree of synthetic complexity for fused-ring small molecule acceptors(FRAs).Furthermore,most FRA-PAs exhibit strong batch-to-batch variation,limiting further industrial applications.Herein,we designed and synthesized asymmetric non-fused electron-deficient building block TIC-Br with a simple structure(only three synthetic steps),showing a planar configuration,excellent electron affinity,and large dipole moment.A simple polymer acceptor PTIB was further developed by polymerization of TIC-Br and sensitized fluorinated-thienyl benzodithiophene(BDT-TF-Sn).PTIB exhibits a broad absorption from 300 to 800 nm,a suitable lowest unoccupied molecular orbital(LUMO) energy level of-3.86 e V,and moderate electron mobility(1.02×10^(-4)cm^(2)V^(-1)s^(-1)).When matched with PM6,the device achieved the best PCE of 10.11%with a high V_(OC) of 0.97 V,which is one of the highest among those reported all-PSCs.More importantly,PTIB exhibits a lower synthetic complexity index(SC=35.0%)and higher figure-of-merit values(FOM=29.0%) than all the reported high-performance PAs.The polymer also exhibits excellent batch-to-batch reproducibility and great potential for scale-up fabrication.This study indicates that TIC-Br is a promising building block for constructing low-cost polymer acceptors for large-scale applications in all-PSCs.展开更多
Plasmonic hot electrons have long been regarded as a promising energy source for inducing chemical transformations.However,because of the mismatch between the electron cloud of reactant molecules and the hot-electron ...Plasmonic hot electrons have long been regarded as a promising energy source for inducing chemical transformations.However,because of the mismatch between the electron cloud of reactant molecules and the hot-electron gas of metal nanoparticles(NPs),the highly localized and short-lived hot electrons are dif-ficult to utilize in bulk synthesis when the reactant molecules do not have a strong affinity for the metal surface.Here,we propose the concept of polarized nanocatalysts to mimic chemical polarity at the nanometer scale.Under plasmonic photorecycling conditions,the rationally designed asymmetric Ag-TiO_(2) hybrid NPs enable six-electron reduction of molecules in bulk solution.This hot-electron-driven reaction does not require a conventional hydrogen or hydride reducing agent.As a proof-of-concept,one-pot photocatalytic syntheses of amides,such as paracetamol,using nitro reactants were performed.This provides a new opportunity to enable challenging multielectron transformations in organic chemistry.展开更多
基金supported by the National Key R&D Program of China(2018YFA0404702,2019YFA0708904,2021YFC2203501)Shanghai Key Laboratory of Space Navigation and Positioning Techniques,the National Natural Science Foundation of China(12273097,11903068).
文摘The surface accuracy of a radio telescope is directly related to its operational efficiency and detection sensitivity.This is crucial under high-frequency observation conditions,where surface shape errors need to be controlled to within 1/16 of the working wavelength.In addition,the primary reflector of large radio telescopes is subject to dynamic deformation,caused by factors such as gravity and thermal effects.This paper presents a method for detecting the surface shape of radio telescopes using radio interferometry techniques combined with active reflector adjustment technology.This enables accurate assessment and correction of surface errors,ensuring the electrical performance of the radio telescope.This study investigates the practical applications of high-precision measurement techniques,such as microwave holography,out-of-focus holography,and wavefront distortion methods at the Tianma 65 m radio telescope(TMRT).Furthermore,the study presents the construction method of gravity models at different elevation angles and demonstrates the efficacy of the active reflector model.The results of the measurements indicate that the application of these methods to the TMRT has led to a notable enhancement of the accuracy of the primary reflector and a substantial improvement in efficiency in the Q-band.Through a process of iterative measurements and adjustments,the surface shape error is ultimately reduced to 0.28 mm root mean square(RMS).
基金supported by National Key Research&Development Program of China“Research on key technologies for prevention and control of major disasters in plantation”(Grant No.2018YFD0600200)Beijing’s Science and Technology Planning Project“Key technologies for prevention and control of major pests in Beijing ecological public welfare forests”(Grant Nos.Z191100008519004 and Z201100008020001).
文摘Background:Anoplophora glabripennis(Motschulsky),commonly known as Asian longhorned beetle(ALB),is a wood-boring insect that can cause lethal infestation to multiple borer leaf trees.In Gansu Province,northwest China,ALB has caused a large number of deaths of a local tree species Populus gansuensis.The damaged area belongs to Gobi desert where every single tree is artificially planted and is extremely difficult to cultivate.Therefore,the monitoring of the ALB infestation at the individual tree level in the landscape is necessary.Moreover,the determination of an abnormal phenotype that can be obtained directly from remote-sensing images to predict the damage degree can greatly reduce the cost of field investigation and management.Methods:Multispectral WorldView-2(WV-2)images and 5 tree physiological factors were collected as experimental materials.One-way ANOVA of the tree’s physiological factors helped in determining the phenotype to predict damage degrees.The original bands of WV-2 and derived vegetation indices were used as reference data to construct the dataset of a prediction model.Variance inflation factor and stepwise regression analyses were used to eliminate collinearity and redundancy.Finally,three machine learning algorithms,i.e.,Random Forest(RF),Support Vector Machine(SVM),Classification And Regression Tree(CART),were applied and compared to find the best classifier for predicting the damage stage of individual P.gansuensis.Results:The confusion matrix of RF achieved the highest overall classification accuracy(86.2%)and the highest Kappa index value(0.804),indicating the potential of using WV-2 imaging to accurately detect damage stages of individual trees.In addition,the canopy color was found to be positively correlated with P.gansuensis’damage stages.Conclusions:A novel method was developed by combining WV-2 and tree physiological index for semi-automatic classification of three damage stages of P.gansuensis infested with ALB.The canopy color was determined as an abnormal phenotype that could be directly assessed using remote-sensing images at the tree level to predict the damage degree.These tools are highly applicable for driving quick and effective measures to reduce damage to pure poplar forests in Gansu Province,China.
基金supported by the National Natural Science Foundation of China(Nos.61875063 and 62175074)。
文摘On-chip stimulated Brillouin scattering(SBS)has attracted extensive attention by introducing acousto-optic coupling interactions in all-optical signal processing systems.A series of chip-level applications such as Brillouin lasers,amplifiers,gyroscopes,filters,and nonreciprocal devices are realized based on Brillouin acousto-optic interaction.Here,we first introduce the fundamental principle of SBS in integrated photonics and a method for calculating Brillouin gain;then we illustrate the Brillouin effect on different material platforms with diverse applications.Finally,we make a concise conclusion and offer prospects on the future developments of on-chip SBS.
基金supported by the National Natural Science Foundation of China(Nos.21935001 and 22379005)the Beijing Natural Science Foundation(No.Z210016)+3 种基金the National Key Research and Development Program of China(No.2018YFA0702002)Xinjiang Youth Science and Technology Top Talent Project(No.2022TSYCCX0053)Xinjiang Key Research and Development Project(No.2022B01003-2)the Fundamental Research Funds for the Central Universities,and the long-term subsidy mechanism from the Ministry of Finance and the Ministry of Education of PRC.
文摘Zn-air batteries(ZABs)as a potential energy conversion system suffer from low power density(typically≤200 mW·cm^(−2)).Recently,three-dimensional(3D)integrated air cathodes have demonstrated promising performance over traditional twodimensional(2D)plane ones,which is ascribed to enriched active sites and enhanced diffusion,but without experimental evidence.Herein,we applied a bubble pump consumption chronoamperometry(BPCC)method to quantitatively identify the gas diffusion coefficient(D)and effective catalytic sites density(ρEC)of the integrated air cathodes for ZABs.Furthermore,the D andρEC values can instruct consequent optimization on the growth of Co embedded N-doped carbon nanotubes(CoNCNTs)on carbon fiber paper(CFP)and aerophilicity tuning,giving 4 times D and 1.3 timesρEC over the conventional 2D Pt/C-CFP counterparts.As a result,using the CoNCNTs with half-wave potential of merely 0.78 V vs.RHE(Pt/C:0.89 V vs.RHE),the superaerophilic CoNCNTs-CFP cathode-based ZABs exhibited a superior peak power density of 245 mW·cm^(−2) over traditional 2D Pt/C-CFP counterparts,breaking the threshold of 200 mW·cm^(−2).This work reveals the intrinsic feature of the 3D integrated air cathodes by yielding exact D andρEC values,and demonstrates the feasibility of BPCC method for the optimization of integrated electrodes,bypassing trial-and-error strategy.
基金supported by National Natural Science Foundation of China(NSFC)(No.51973146)Shandong Provincial Natural Science Foundation(ZR2022JQ09)。
文摘Narrow-bandgap n-type polymers are essential for advancing the development of all-polymer solar cells(all-PSCs).Herein,we developed a novel polymer acceptor PNT withπ-extended 2-(3-oxo-2,3-dihydro-1H-cyclopenta[b]naphthalen-1-ylidene)malononitrile(CPNM)end groups.Compared to commonly used 2-(3-oxo-2,3-dihydro-1H-cyclopenta[b]naphthalen-1ylidene)malononitrile(IC)units,CPNM units have a further extended fused ring,providing the PNT polymer with extended absorption into the near-IR region(903 nm)and exhibiting a narrow optical bandgap(1.37 eV).Furthermore,PNT exhibits a high electron mobility(6.79×10^(−4) cm^(2)·V^(−1)·S^(−1))and a relatively high-lying lowest unoccupied molecular orbital(LUMO)energy level of−3.80 eV.When blended with PBDB-T,all-PSC achieves a power conversion efficiency(PCE)of 13.7%and a high short-circuit current density(JSC)of 24.4 mA·cm^(−2),mainly attributed to broad absorption(600—900 nm)and efficient charge separation and collection.Our study provides a promising polymer acceptor for all-PSCs and demonstrates thatπ-extended CPNM units are important to achieve high-performance for all-PSCs.
基金supported by the National Natural Science Foundation of China (51973146)the Shandong Provincial Natural Science Foundation (ZR2022JQ09)the Collaborative Innovation Center of Suzhou Nano Science & Technology。
文摘The development of polymerized fused-ring small molecule acceptors(FRA-PAs) has boosted the performance of all-polymer solar cells(all-PSCs).However,these FRA-PAs suffer from lengthy synthesis steps and high production costs due to the high degree of synthetic complexity for fused-ring small molecule acceptors(FRAs).Furthermore,most FRA-PAs exhibit strong batch-to-batch variation,limiting further industrial applications.Herein,we designed and synthesized asymmetric non-fused electron-deficient building block TIC-Br with a simple structure(only three synthetic steps),showing a planar configuration,excellent electron affinity,and large dipole moment.A simple polymer acceptor PTIB was further developed by polymerization of TIC-Br and sensitized fluorinated-thienyl benzodithiophene(BDT-TF-Sn).PTIB exhibits a broad absorption from 300 to 800 nm,a suitable lowest unoccupied molecular orbital(LUMO) energy level of-3.86 e V,and moderate electron mobility(1.02×10^(-4)cm^(2)V^(-1)s^(-1)).When matched with PM6,the device achieved the best PCE of 10.11%with a high V_(OC) of 0.97 V,which is one of the highest among those reported all-PSCs.More importantly,PTIB exhibits a lower synthetic complexity index(SC=35.0%)and higher figure-of-merit values(FOM=29.0%) than all the reported high-performance PAs.The polymer also exhibits excellent batch-to-batch reproducibility and great potential for scale-up fabrication.This study indicates that TIC-Br is a promising building block for constructing low-cost polymer acceptors for large-scale applications in all-PSCs.
基金financial support from the National Key R&D Program of China(grant no.2021YFB4000600)the National Natural Science Foundation of China(grant no.22022406)+2 种基金the Natural Science Foundation of Tianjin(grant nos.20JCJQJC00110 and 20JCYBJC00590)the 111 project(grant no.B12015)the Haihe Laboratory of Sustainable Chemical Transformations.
文摘Plasmonic hot electrons have long been regarded as a promising energy source for inducing chemical transformations.However,because of the mismatch between the electron cloud of reactant molecules and the hot-electron gas of metal nanoparticles(NPs),the highly localized and short-lived hot electrons are dif-ficult to utilize in bulk synthesis when the reactant molecules do not have a strong affinity for the metal surface.Here,we propose the concept of polarized nanocatalysts to mimic chemical polarity at the nanometer scale.Under plasmonic photorecycling conditions,the rationally designed asymmetric Ag-TiO_(2) hybrid NPs enable six-electron reduction of molecules in bulk solution.This hot-electron-driven reaction does not require a conventional hydrogen or hydride reducing agent.As a proof-of-concept,one-pot photocatalytic syntheses of amides,such as paracetamol,using nitro reactants were performed.This provides a new opportunity to enable challenging multielectron transformations in organic chemistry.