期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Exogenous neural stem cell transplantation for cerebral ischemia 被引量:20
1
作者 ling-yi liao Benson Wui-Man Lau +1 位作者 Dalinda Isabel Sánchez-Vidana Qiang Gao 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第7期1129-1137,共9页
Cerebral ischemic injury is the main manifestation of stroke,and its incidence in stroke patients is 70–80%.Although ischemic stroke can be treated with tissue-type plasminogen activator,its time window of effectiven... Cerebral ischemic injury is the main manifestation of stroke,and its incidence in stroke patients is 70–80%.Although ischemic stroke can be treated with tissue-type plasminogen activator,its time window of effectiveness is narrow.Therefore,the incidence of paralysis,hypoesthesia,aphasia,dysphagia,and cognitive impairment caused by cerebral ischemia is high.Nerve tissue regeneration can promote the recovery of the aforementioned dysfunction.Neural stem cells can participate in the reconstruction of the damaged nervous system and promote the recovery of nervous function during self-repair of damaged brain tissue.Neural stem cell transplantation for ischemic stroke has been a hot topic for more than 10 years.This review discusses the treatment of ischemic stroke with neural stem cells,as well as the mechanisms of their involvement in stroke treatment. 展开更多
关键词 nerve regeneration stem cell therapy neural stem cells cell transplantation ischemic stroke cerebral ischemia NEUROPLASTICITY functional recovery neural regeneration
下载PDF
Extremely low frequency electromagnetic fields promote cognitive function and hippocampal neurogenesis of rats with cerebral ischemia 被引量:3
2
作者 Qiang Gao Aaron Leung +5 位作者 Yong-Hong Yang Benson Wui-Man Lau Qian Wang ling-yi liao Yun-Juan Xie Cheng-Qi He 《Neural Regeneration Research》 SCIE CAS CSCD 2021年第7期1252-1257,共6页
Extremely low frequency electromagnetic fields(ELF-EMF) can improve the learning and memory impairment of rats with Alzheimer's disease, however, its effect on cerebral ischemia remains poorly understood.In this s... Extremely low frequency electromagnetic fields(ELF-EMF) can improve the learning and memory impairment of rats with Alzheimer's disease, however, its effect on cerebral ischemia remains poorly understood.In this study, we established rat models of middle cerebral artery occlusion/reperfusion.One day after modeling, a group of rats were treated with ELF-EMF(50 Hz, 1 mT) for 2 hours daily on 28 successive days.Our results showed that rats treated with ELF-EMF required shorter swimming distances and latencies in the Morris water maze test than those of untreated rats.The number of times the platform was crossed and the time spent in the target quadrant were greater than those of untreated rats.The number of BrdU~+/NeuN~+ cells, representing newly born neurons, in the hippocampal subgranular zone increased more in the treated than in untreated rats.Up-regulation in the expressions of Notch1, Hes1, and Hes5 proteins, which are the key factors of the Notch signaling pathway, was greatest in the treated rats.These findings suggest that ELF-EMF can enhance hippocampal neurogenesis of rats with cerebral ischemia, possibly by affecting the Notch signaling pathway.The study was approved by the Institutional Ethics Committee of Sichuan University, China(approval No.2019255A) on March 5, 2019. 展开更多
关键词 cerebral ischemia cognitive function electromagnetic fields HIPPOCAMPUS NEUROGENESIS PLASTICITY repair signaling pathway STROKE rat
下载PDF
Intermittent Theta Burst Stimulation Attenuates Cognitive Deficits and Alzheimer’s Disease-Type Pathologies via ISCA1-Mediated Mitochondrial Modulation in APP/PS1 Mice
3
作者 Yang Zhu Hao Huang +5 位作者 Zhi Chen Yong Tao ling-yi liao Shi-Hao Gao Yan-Jiang Wang Chang-Yue Gao 《Neuroscience Bulletin》 SCIE CAS CSCD 2024年第2期182-200,共19页
Intermittent theta burst stimulation(iTBS),a time-saving and cost-effective repetitive transcranial magnetic stimulation regime,has been shown to improve cognition in patients with Alzheimer’s disease(AD).However,the... Intermittent theta burst stimulation(iTBS),a time-saving and cost-effective repetitive transcranial magnetic stimulation regime,has been shown to improve cognition in patients with Alzheimer’s disease(AD).However,the specific mechanism underlying iTBS-induced cognitive enhancement remains unknown.Previous studies suggested that mitochondrial functions are modulated by magnetic stimulation.Here,we showed that iTBS upregulates the expression of iron-sulfur cluster assembly 1(ISCA1,an essential regulatory factor for mitochondrial respiration)in the brain of APP/PS1 mice.In vivo and in vitro studies revealed that iTBS modulates mitochondrial iron-sulfur cluster assembly to facilitate mitochondrial respiration and function,which is required for ISCA1.Moreover,iTBS rescues cognitive decline and attenuates AD-type pathologies in APP/PS1 mice.The present study uncovers a novel mechanism by which iTBS modulates mitochondrial respiration and function via ISCA1-mediated iron-sulfur cluster assembly to alleviate cognitive impairments and pathologies in AD.We provide the mechanistic target of iTBS that warrants its therapeutic potential for AD patients. 展开更多
关键词 Intermittent theta burst stimulation Alzheimer’s disease Iron-sulfur cluster assembly 1 Mitochondrial dysfunction NEURODEGENERATION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部