期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
In situ direct reprogramming of astrocytes to neurons via polypyrimidine tract-binding protein 1 knockdown in a mouse model of ischemic stroke
1
作者 Meng Yuan Yao Tang +2 位作者 Tianwen Huang lining ke En Huang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第10期2240-2248,共9页
In situ direct reprogramming technology can directly convert endogenous glial cells into functional neurons in vivo for central nervous system repair. Polypyrimidine tract-binding protein 1(PTB) knockdown has been sho... In situ direct reprogramming technology can directly convert endogenous glial cells into functional neurons in vivo for central nervous system repair. Polypyrimidine tract-binding protein 1(PTB) knockdown has been shown to reprogram astrocytes to functional neurons in situ. In this study, we used AAV-PHP.e B-GFAP-sh PTB to knockdown PTB in a mouse model of ischemic stroke induced by endothelin-1, and investigated the effects of GFAP-sh PTB-mediated direct reprogramming to neurons. Our results showed that in the mouse model of ischemic stroke, PTB knockdown effectively reprogrammed GFAP-positive cells to neurons in ischemic foci, restored neural tissue structure, reduced inflammatory response, and improved behavioral function. These findings validate the effectiveness of in situ transdifferentiation of astrocytes, and suggest that the approach may be a promising strategy for stroke treatment. 展开更多
关键词 astrocyte in situ direct reprogramming ischemic stroke miR-30 based shRNA neuron polypyrimidine tract-binding protein 1 TRANSDIFFERENTIATION
下载PDF
Ginsenoside Rb1 attenuates activated microglia-induced neuronal damage 被引量:11
2
作者 lining ke Wei Guo +3 位作者 Jianwen Xu Guodong Zhang Wei Wang Wenhua Huang 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第3期252-259,共8页
The microglia-mediated inflammatory reaction promotes neuronal damage under cerebral isch- emia/hypoxia conditions. We therefore speculated that inhibition of hypoxia-induced microglial activation may alleviate neuron... The microglia-mediated inflammatory reaction promotes neuronal damage under cerebral isch- emia/hypoxia conditions. We therefore speculated that inhibition of hypoxia-induced microglial activation may alleviate neuronal damage. To test this hypothesis, we co-cultured ginsenoside Rb 1, an active component of ginseng, and cortical neurons. Ginsenoside Rb l protected neuronal morphology and structure in a single hypoxic culture system and in a hypoxic co-culture system with microglia, and reduced neuronal apoptosis and caspase-3 production. The protective effect was observable prior to placing in co-culture. Additionally, ginsenoside Rbl inhibited levels of tumor necrosis factor-a in a co-culture system containing activated N9 microglial cells. Ginse-noside Rbl also significantly decreased nitric oxide and superoxide production induced by N9 microglia. Our findings indicate that ginsenoside Rbl attenuates damage to cerebral cortex neu-rons by downregulation of nitric oxide, superoxide, and tumor necrosis factor-a expression in hypoxia-activated microglia. 展开更多
关键词 nerve regeneration traditional Chinese medicine ischemia/hypoxia MICROGLIA neurons apoptosis ginsenoside Rb l nerve inflammation factor NSFC grant neural regeneration
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部