A large-scale fine-grained Mg-Gd-Y-Zn-Zr alloy plate with high strength and ductility was successfully prepared by multi-pass friction stir processing(MFSP)technology in this work.The structure of grains and long peri...A large-scale fine-grained Mg-Gd-Y-Zn-Zr alloy plate with high strength and ductility was successfully prepared by multi-pass friction stir processing(MFSP)technology in this work.The structure of grains and long period stacking ordered(LPSO)phase were characterized,and the mechanical properties uniformity was investigated.Moreover,a quantitative relationship between the microstructure and tensile yield strength was established.The results showed that the grains in the processed zone(PZ)and interfacial zone(IZ)were refined from 50μm to 3μm and 4μm,respectively,and numerous original LPSO phases were broken.In IZ,some block-shaped 18R LPSO phases were transformed into needle-like 14H LPSO phases due to stacking faults and the short-range diffusion of solute atoms.The severe shear deformation in the form of kinetic energy caused profuse stacking fault to be generated and move rapidly,greatly increasing the transformation rate of LPSO phase.After MFSP,the ultimate tensile strength,yield strength and elongation to failure of the large-scale plate were 367 MPa,305 MPa and 18.0% respectively.Grain refinement and LPSO phase strengthening were the major strengthening mechanisms for the MFSP sample.In particularly,the strength of IZ was comparable to that of PZ because the strength contribution of the 14H LPSO phase offsets the lack of grain refinement strengthening in IZ.This result opposes the widely accepted notion that IZ is a weak region in MFSP-prepared large-scale fine-grained plate.展开更多
A good Ti-based joint implant should prevent stress shielding and achieve good bioactivity and anti-infection performance.To meet these requirements,the low-elastic-modulus alloy—Ti–35Nb–2Ta–3Zr—was used as the s...A good Ti-based joint implant should prevent stress shielding and achieve good bioactivity and anti-infection performance.To meet these requirements,the low-elastic-modulus alloy—Ti–35Nb–2Ta–3Zr—was used as the substrate,and functional coatings that contained bioceramics and Ag ions were prepared for coating on TiO_(2)nanotubes(diameter:(80±20)nm and(150±40)nm)using anodization,deposition,and spin-coating methods.The effects of the bioceramics(nano-β-tricalcium phosphate,microhydroxyapatite(micro-HA),and meso-CaSiO_(3))and Ag nanoparticles(size:(50±20)nm)on the antibacterial activity and the tribocorrosion,corrosion,and early in vitro osteogenic behaviors of the nanotubes were investigated.The tribocorrosion and corrosion results showed that the wear rate and corrosive rate were highly dependent on the features of the nanotube surface.Micro-HA showed great wear resistance with a wear rate of(1.26±0.06)×10^(−3)mm^(3)/(N·m)due to adhesive and abrasivewear.Meso-CaSiO_(3)showed enhanced cell adhesion,proliferation,and alkaline phosphatase activity.The coatings that contained nano-Ag exhibited good antibacterial activity with an antibacterial rate of≥89.5%against Escherichia coli.These findings indicate that hybrid coatings may have the potential to accelerate osteogenesis.展开更多
Neurotrophic keratopathy is a persistent defect of the corneal epithelium,with or without stromal ulceration,due to corneal nerve deficiency caused by a variety of etiologies.The treatment options for neurotrophic ker...Neurotrophic keratopathy is a persistent defect of the corneal epithelium,with or without stromal ulceration,due to corneal nerve deficiency caused by a variety of etiologies.The treatment options for neurotrophic keratopathy are limited.In this study,an ophthalmic solution was constructed from a chitosan-based thermosensitive hydrogel with long-term release of murine nerve growth factor(CTH-mNGF).Its effectiveness was evaluated in corneal denervation(CD)mice and patients with neurotrophic keratopathy.In the preclinical setting,CTH-mNGF was assessed in a murine corneal denervation model.CTH-mNGF was transparent,thermosensitive,and ensured sustained release of mNGF for over 20 hours on the ocular surface,maintaining the local mNGF concentration around 1300 pg/mL in vivo.Corneal denervation mice treated with CTH-mNGF for 10 days showed a significant increase in corneal nerve area and total corneal nerve length compared with non-treated and CTH treated mice.A subsequent clinical trial of CTH-mNGF was conducted in patients with stage 2 or 3 neurotrophic keratopathy.Patients received topical CTH-mNGF twice daily for 8 weeks.Fluorescein sodium images,Schirmer’s test,intraocular pressure,Cochet-Bonnet corneal perception test,and best corrected visual acuity were evaluated.In total,six patients(total of seven eyes)diagnosed with neurotrophic keratopathy were enrolled.After 8 weeks of CTH-mNGF treatment,all participants showed a decreased area of corneal epithelial defect,as stained by fluorescence.Overall,six out of seven eyes had fluorescence staining scores<5.Moreover,best corrected visual acuity,intraocular pressure,Schirmer’s test and Cochet-Bonnet corneal perception test results showed no significant improvement.An increase in corneal nerve density was observed by in vivo confocal microscopy after 8 weeks of CTH-mNGF treatment in three out of seven eyes.This study demonstrates that CTH-mNGF is transparent,thermosensitive,and has sustained-release properties.Its effectiveness in healing corneal epithelial defects in all eyes with neurotrophic keratopathy suggests CTH-mNGF has promising application prospects in the treatment of neurotrophic keratopathy,being convenient and cost effective.展开更多
The synthesis of carbide coatings on graphite substrates using molten salt synthesis(MSS),has garnered significant interest due to its cost-effective nature.This study investigates the reaction process and growth kine...The synthesis of carbide coatings on graphite substrates using molten salt synthesis(MSS),has garnered significant interest due to its cost-effective nature.This study investigates the reaction process and growth kinetics involved in MSS,shedding light on key aspects of the process.The involvement of Ti powder through liquid-phase mass transfer is revealed,where the diffusion distance and quantity of Ti powder play a crucial role in determining the reaction rate by influencing the C content gradient on both sides of the carbide.Furthermore,the growth kinetics of the carbide coating are predominantly governed by the diffusion behavior of C within the carbide layer,rather than the chemical reaction rate.To analyze the kinetics,the thickness of the carbide layer is measured with respect to heat treatment time and temperature,unveiling a parabolic relationship within the temperature range of 700-1300℃.The estimated activation energy for the reaction is determined to be 179283 J·mol^(-1).These findings offer valuable insights into the synthesis of carbide coatings via MSS,facilitating their optimization and enhancing our understanding of their growth mechanisms and properties for various applications.展开更多
Spent cathode carbon(SCC)from aluminum electrolysis is a potential graphite resource.However,full use of the SCC remains a challenge,since it contains many hazardous substances(e.g.,fluoride salts,cyanides),encapsulat...Spent cathode carbon(SCC)from aluminum electrolysis is a potential graphite resource.However,full use of the SCC remains a challenge,since it contains many hazardous substances(e.g.,fluoride salts,cyanides),encapsulated within the thick carbon layers and thus posing serious environmental concerns.This work presents a chemical oxidative exfoliation route to achieve the recycling of SCC and the decontaminated SCC with high-valued graphene oxide(GO)-like carbon structures(SCC-GO)is applied as an excellent adsorbent for organic pollutants.Specifically,after the oxidative exfoliation,the embedded hazardous constituents are fully exposed,facilitating their subsequent removal by aqueous leaching.Moreover,benefiting from the enhanced specific surface areas along with abundant O-containing functional groups,the as-produced SCC-GO,shows an adsorption capacity as high as 347 mg·g^(-1)when considering methylene blue as a pollutant model,which exceeds most of the recently reported carbon-based adsorbents.Our study provides a feasible solution for the efficient recycling of hazardous carbonaceous wastes.展开更多
Artificial cells are constructed from synthetic materials to imitate the biological functions of natural cells.By virtue of nanoengineering techniques,artificial cells with designed biomimetic functions provide altern...Artificial cells are constructed from synthetic materials to imitate the biological functions of natural cells.By virtue of nanoengineering techniques,artificial cells with designed biomimetic functions provide alternatives to natural cells,showing vast potential for biomedical applications.Especially in cancer treatment,the deficiency of immunoactive macrophages results in tumor progression and immune resistance.To overcome the limitation,a BaSO_(4)@ZIF-8/transferrin(TRF)nanomacrophage(NMΦ)is herein constructed as an alternative to immunoactive macrophages.Alike to natural immunoactive macrophages,NMΦis stably retained in tumors through the specific affinity of TRF to tumor cells.Zn^(2+)as an“artificial cytokine”is then released from the ZIF-8 layer of NMΦunder tumor microenvironment.Similar as proinflammatory cytokines,Zn^(2+)can trigger cell anoikis to expose tumor antigens,which are selectively captured by the BaSO_(4)cavities.Therefore,the hierarchical nanostructure of NMΦs allows them to mediate immunogenic death of tumor cells and subsequent antigen capture for T cell activation to fabricate long-term antitumor immunity.As a proof-of-concept,the NMΦmimics the biological functions of macrophage,including tumor residence,cytokine release,antigen capture and immune activation,which is hopeful to provide a paradigm for the design and biomedical applications of artificial cells.展开更多
The molded pulp,a product of three-dimensional papermaking technology,is environmentally friendly and has a low environmental impact due to its ability to decompose quickly in the natural environment after disposal.Th...The molded pulp,a product of three-dimensional papermaking technology,is environmentally friendly and has a low environmental impact due to its ability to decompose quickly in the natural environment after disposal.The application of molded pulp for food packaging can replace or reduce the use of plastic food packaging.Researchers extract fibers from plants for the production of safe and hygienic molded pulp for food packaging,and they also study and enhance the qualities of molded pulp to broaden its use in the food industry.This paper reviews the sources and varieties of plant fiber used in molded pulp for food packaging,as well as research on the improvement and optimization of the performance of molded pulp products.Additionally,issues with molded pulp’s actual use for food packaging are reviewed,along with the potential for future research.This work can serve as a reference for molded pulp applications and research in the food industry in the future.展开更多
Background:Goat milk is very similar to human milk in terms of its abundant nutrients and ease of digestion.To derive greater economic benefit,farmers require more female offspring(does);however,the buck-to-doe offspr...Background:Goat milk is very similar to human milk in terms of its abundant nutrients and ease of digestion.To derive greater economic benefit,farmers require more female offspring(does);however,the buck-to-doe offspring sex ratio is approximately 50%.At present,artificial insemination after the separation of X/Y sperm using flow cytometry is the primary means of controlling the sex of livestock offspring.However,flow cytometry has not been successfully utilised for the separation of X/Y sperm aimed at sexing control in dairy goats.Results:In this study,a novel,simple goat sperm sexing technology that activates the toll-like receptor 7/8(TLR7/8),thereby inhibiting X-sperm motility,was investigated.Our results showed that the TLR7/8 coding goat Xchromosome was expressed in approximately 50%of round spermatids in the testis and sperm,as measured from cross-sections of the epididymis and ejaculate,respectively.Importantly,TLR7/8 was located at the tail of the Xsperm.Upon TLR7/8 activation,phosphorylated forms of glycogen synthase kinaseα/β(GSK3α/β)and nuclear factor kappa-B(NF-κB)were detected in the X-sperm,causing reduced mitochondrial activity,ATP levels,and sperm motility.High-motility Y-sperm segregated to the upper layer and the low-motility X-sperm,to the lower layer.Following in vitro fertilisation using the TLR7/8-activated sperm from the lower layer,80.52±6.75%of the embryos were XX females.The TLR7/8-activated sperm were subsequently used for in vivo embryo production via the superovulatory response;nine embryos were collected from the uterus of two does that conceived.Eight of these were XX embryos,and one was an XY embryo.Conclusions:Our study reveals a novel TLR7/8 signalling mechanism that affects X-sperm motility via the GSK3α/β-hexokinase pathway;this technique could be used to facilitate the efficient production of sexed dairy goat embryos.展开更多
We have successfully ported an arbitrary highorder discontinuous Galerkin method for solving the threedimensional isotropic elastic wave equation on unstructured tetrahedral meshes to multiple Graphic Processing Units...We have successfully ported an arbitrary highorder discontinuous Galerkin method for solving the threedimensional isotropic elastic wave equation on unstructured tetrahedral meshes to multiple Graphic Processing Units (GPUs) using the Compute Unified Device Architecture (CUDA) of NVIDIA and Message Passing Interface (MPI) and obtained a speedup factor of about 28.3 for the single-precision version of our codes and a speedup factor of about 14.9 for the double-precision version. The GPU used in the comparisons is NVIDIA Tesla C2070 Fermi, and the CPU used is Intel Xeon W5660. To effectively overlap inter-process communication with computation, we separate the elements on each subdomain into inner and outer elements and complete the computation on outer elements and fill the MPI buffer first. While the MPI messages travel across the network, the GPU performs computation on inner elements, and all other calculations that do not use information of outer elements from neighboring subdomains. A significant portion of the speedup also comes from a customized matrix-matrix multiplication kernel, which is used extensively throughout our program. Preliminary performance analysis on our parallel GPU codes shows favorable strong and weak scalabilities.展开更多
2-methyl-tetrahydrofuran(2-MTHF)is a promising biofuel or fuel additive with excellent burning property,a versatile new-style solvent in organic synthesis,and an important medical intermediate.In this work,a one-pot s...2-methyl-tetrahydrofuran(2-MTHF)is a promising biofuel or fuel additive with excellent burning property,a versatile new-style solvent in organic synthesis,and an important medical intermediate.In this work,a one-pot selective conversion of furfural(FA)into 2-MTHF was carried out over Zn doped Co/NC catalysts.The Zn-Co/NC-1 catalyst with trace Zn dopant(0.38 wt%)exhibited the best performance(yield of 2-MTHF:93.8%).According to the characterizations,it was found that the Zn not only incorporates into the carbon support but also partially dopes into Co nanoparticles.Subsequently,theoretical calculations demonstrated that the doping of Zn in carbon support can effectively enhance the electron transfer from the support to the metallic Co particle,leading to the electron-rich Co surface.The presence of Zn was found to promote the dissociation of hydrogen and to lower the diffusion barrier of hydrogen atom,in favor of the hydrogenation/hydrodeoxygenation processes.Furthermore,the Zn doped models exhibit much lower barrier in breaking C–OH bond of FOL,resulting in higher activity for hydrodeoxygenation of FOL.These theoretical results are consistent with the in situ FT-IR analysis of adsorption substrates and intermediates over Zn doped catalyst.This work reveals the mechanism of dopant Zn tailoring the electronic structure and catalytic performance of active sites,providing a deep insight into the design of economical and high-performance catalysts for hydrogenation/hydrodeoxygenation of biomass feedstocks.展开更多
Image classifiers that based on Deep Neural Networks(DNNs)have been proved to be easily fooled by well-designed perturbations.Previous defense methods have the limitations of requiring expensive computation or reducin...Image classifiers that based on Deep Neural Networks(DNNs)have been proved to be easily fooled by well-designed perturbations.Previous defense methods have the limitations of requiring expensive computation or reducing the accuracy of the image classifiers.In this paper,we propose a novel defense method which based on perceptual hash.Our main goal is to destroy the process of perturbations generation by comparing the similarities of images thus achieve the purpose of defense.To verify our idea,we defended against two main attack methods(a white-box attack and a black-box attack)in different DNN-based image classifiers and show that,after using our defense method,the attack-success-rate for all DNN-based image classifiers decreases significantly.More specifically,for the white-box attack,the attack-success-rate is reduced by an average of 36.3%.For the black-box attack,the average attack-success-rate of targeted attack and non-targeted attack has been reduced by 72.8%and 76.7%respectively.The proposed method is a simple and effective defense method and provides a new way to defend against adversarial samples.展开更多
Synthetic seismograms generated by solving the seismic wave equation using numerical methods are being widely used in seismology. For fully three-dimensional seismic structure models, the generation of these synthetic...Synthetic seismograms generated by solving the seismic wave equation using numerical methods are being widely used in seismology. For fully three-dimensional seismic structure models, the generation of these synthetic seismograms may require large amount of computing resources. Conventional high-performance computer clusters may not provide a cost-effective solution to this type of applications. The newly emerging cloud-computing platform provides an alternative solution. In this paper, we describe our implementation of a synthetic seismogram generator based on the reciprocity principle using the Windows Azure cloud application framework. Our preliminary experiment shows that our cloud-based synthetic seismogram generator provides a costeffective and numerically efficient approach for computing synthetic seismograms based on the reciprocity principle.展开更多
Electronic skin,a class of wearable electronic sensors that mimic the functionalities of human skin,has made remarkable success in applications including health monitoring,human-machine interaction and electronic-biol...Electronic skin,a class of wearable electronic sensors that mimic the functionalities of human skin,has made remarkable success in applications including health monitoring,human-machine interaction and electronic-biological interfaces.While electronic skin continues to achieve higher sensitivity and faster response,its ultimate performance is fundamentally limited by the nature of low-frequency AC currents.Herein,highly sensitive skin-like wearable optical sensors are demonstrated by embedding glass micro/nanofibers(MNFs)in thin layers of polydimethylsiloxane(PDMS).Enabled by the transition from guided modes into radiation modes of the waveguiding MNFs upon external stimuli,the skin-like optical sensors show ultrahigh sensitivity(1870 k·Pa^-1),low detection limit(7 mPa)and fast response(10μs)for pressure sensing,significantly exceeding the performance metrics of state-of-the-art electronic skins.Electromagnetic interference(EMI)-free detection of high-frequency vibrations,wrist pulse and human voice are realized.Moreover,a five-sensor optical data glove and a 2×2-MNF tactile sensor are demonstrated.These initial results pave the way toward a new category of optical devices ranging from ultrasensitive wearable sensors to optical skins.展开更多
Bioprinting is an emerging additive manufacturing technology that has enormous potential in bone implantation and repair. The insufficient accuracy of the shape of bioprinted parts is a primary clinical barrier that p...Bioprinting is an emerging additive manufacturing technology that has enormous potential in bone implantation and repair. The insufficient accuracy of the shape of bioprinted parts is a primary clinical barrier that prevents widespread utilization of bioprinting,especially for bone design with high-resolution requirements. During the last five years, the use of computer vision for process control has been widely practiced in the manufacturing field. Computer vision can improve the performance of bioprinting for bone research with respect to various aspects, including accuracy, resolution, and cell survival rate. Hence, computer vision plays a substantial role in addressing the current defect problem in bioprinting for bone research. In this review, recent advances in the application of computer vision in bioprinting for bone research are summarized and categorized into three groups based on different defect types: bone scaffold process control, deep learning, and cell viability models. The collection of printing parameters,data processing, and feedback of bioprinting information, which ultimately improves printing capabilities, are further discussed. We envision that computer vision may offer opportunities to accelerate bioprinting development and provide a new perception for bone research.展开更多
In recent years,deep learning models represented by convolutional neural networks have shown incomparable advantages in image recognition and have been widely used in various fields.In the diagnosis of sucker-rod pump...In recent years,deep learning models represented by convolutional neural networks have shown incomparable advantages in image recognition and have been widely used in various fields.In the diagnosis of sucker-rod pump working conditions,due to the lack of a large-scale dynamometer card data set,the advantages of a deep convolutional neural network are not well reflected,and its application is limited.Therefore,this paper proposes an intelligent diagnosis method of the working conditions in sucker-rod pump wells based on transfer learning,which is used to solve the problem of too few samples in a dynamometer card data set.Based on the dynamometer cards measured in oilfields,image classification and preprocessing are conducted,and a dynamometer card data set including 10 typical working conditions is created.On this basis,using a trained deep convolutional neural network learning model,model training and parameter optimization are conducted,and the learned deep dynamometer card features are transferred and applied so as to realize the intelligent diagnosis of dynamometer cards.The experimental results show that transfer learning is feasible,and the performance of the deep convolutional neural network is better than that of the shallow convolutional neural network and general fully connected neural network.The deep convolutional neural network can effectively and accurately diagnose the working conditions of sucker-rod pump wells and provide an effective method to solve the problem of few samples in dynamometer card data sets.展开更多
In order to improve the properties of titanium alloys manufactured by laser melting deposition(LMD),the electroshocking treatment(EST)was proposed in this work.The effects of EST on microstructure and mechanical prope...In order to improve the properties of titanium alloys manufactured by laser melting deposition(LMD),the electroshocking treatment(EST)was proposed in this work.The effects of EST on microstructure and mechanical properties of LMD Ti-6.5Al-3.5Mo-1.5Zr-0.3Si were investigated.The results showed that the width of the heat affected band decreased and disappeared under the thermal and athermal effects of EST,resulting in the uniform microstructure.In the microstructure,theαlaths became coarser gradually,and the quantity ofα/βinterface was reduced.The reduction of the quantity ofα/βinterface leads to make less resistant to dislocation,resulting in the reduction in hardness and strength.The discontinuous grain boundaryαphase and nucleationαcolony near grain boundary inhibited the crack propagation and improved the ductility.Summary,EST can manipulate the microstructure and improve the mechanical properties of LMD titanium alloys.展开更多
Carbon-supported single-atom catalysts were found to suffer reversible deactivation in catalytic hydrogenation,but the mechanism is still unclear.Herein,nitro compounds hydrogenation catalyzed by N-doped carbon-suppor...Carbon-supported single-atom catalysts were found to suffer reversible deactivation in catalytic hydrogenation,but the mechanism is still unclear.Herein,nitro compounds hydrogenation catalyzed by N-doped carbon-supported Co single atom(Co1/NC)was taken as a model to uncover the mechanism of the reversible deactivation phenomenon.Co1/NC exhibited moderate adsorption towards the substrate molecules(i.e.,nitro compounds or related intermediates),which could be strengthened by the confinement effect from the porous structure.Consequently,substrate molecules tend to accumulate within the pore channel,especially micropores that host Co1,making it difficult for the reactants to access the active sites and finally leading to their deactivation.The situation could be even worse when the substrate molecules possess a large size.Nevertheless,the catalytic activity of Co1/NC could be restored via a simple thermal treatment,which could remove the adsorbates within the pore channel,hence releasing active sites that were originally inaccessible to reactants.展开更多
基金supported by the National Key Research and Development Program of China(2021YFB3501002)State Key Program of National Natural Science Foundation of China(5203405)+3 种基金National Natural Science Foundation of China(51974220,52104383)National Key Research and Development Program of China(2021YFB3700902)Key Research and Development Program of Shaanxi Province(2020ZDLGY13-06,2017ZDXM-GY-037)Shaanxi Province National Science Fund for Distinguished Young Scholars(2022JC-24)。
文摘A large-scale fine-grained Mg-Gd-Y-Zn-Zr alloy plate with high strength and ductility was successfully prepared by multi-pass friction stir processing(MFSP)technology in this work.The structure of grains and long period stacking ordered(LPSO)phase were characterized,and the mechanical properties uniformity was investigated.Moreover,a quantitative relationship between the microstructure and tensile yield strength was established.The results showed that the grains in the processed zone(PZ)and interfacial zone(IZ)were refined from 50μm to 3μm and 4μm,respectively,and numerous original LPSO phases were broken.In IZ,some block-shaped 18R LPSO phases were transformed into needle-like 14H LPSO phases due to stacking faults and the short-range diffusion of solute atoms.The severe shear deformation in the form of kinetic energy caused profuse stacking fault to be generated and move rapidly,greatly increasing the transformation rate of LPSO phase.After MFSP,the ultimate tensile strength,yield strength and elongation to failure of the large-scale plate were 367 MPa,305 MPa and 18.0% respectively.Grain refinement and LPSO phase strengthening were the major strengthening mechanisms for the MFSP sample.In particularly,the strength of IZ was comparable to that of PZ because the strength contribution of the 14H LPSO phase offsets the lack of grain refinement strengthening in IZ.This result opposes the widely accepted notion that IZ is a weak region in MFSP-prepared large-scale fine-grained plate.
基金supported by the National Natural Science Foundation of China(Nos.52071346,52111530193,and 52274387)the Natural Science Foundation of Hunan Province for Distinguished Young Scholars(No.2023JJ10075)+3 种基金the Hunan Provincial Natural Science Foundation of China(No.2021JJ30846)the Central South University Research Program of Advanced Interdisciplinary Studies(No.2023QYJC038)the Funding for the Medical Engineering Cross Disciplinary Project at Shanghai Jiao Tong University,and the Fundamental Research Funds for the Central Universities of Central South University(No.2022ZZTS0402)The authors would also thank Sinoma Institute of Materials Research(Guangzhou)Co.,Ltd.for the assistance with the TEM characterization.
文摘A good Ti-based joint implant should prevent stress shielding and achieve good bioactivity and anti-infection performance.To meet these requirements,the low-elastic-modulus alloy—Ti–35Nb–2Ta–3Zr—was used as the substrate,and functional coatings that contained bioceramics and Ag ions were prepared for coating on TiO_(2)nanotubes(diameter:(80±20)nm and(150±40)nm)using anodization,deposition,and spin-coating methods.The effects of the bioceramics(nano-β-tricalcium phosphate,microhydroxyapatite(micro-HA),and meso-CaSiO_(3))and Ag nanoparticles(size:(50±20)nm)on the antibacterial activity and the tribocorrosion,corrosion,and early in vitro osteogenic behaviors of the nanotubes were investigated.The tribocorrosion and corrosion results showed that the wear rate and corrosive rate were highly dependent on the features of the nanotube surface.Micro-HA showed great wear resistance with a wear rate of(1.26±0.06)×10^(−3)mm^(3)/(N·m)due to adhesive and abrasivewear.Meso-CaSiO_(3)showed enhanced cell adhesion,proliferation,and alkaline phosphatase activity.The coatings that contained nano-Ag exhibited good antibacterial activity with an antibacterial rate of≥89.5%against Escherichia coli.These findings indicate that hybrid coatings may have the potential to accelerate osteogenesis.
基金supported by PLA General Hospital Program,No.LB20201A010024(to LW).
文摘Neurotrophic keratopathy is a persistent defect of the corneal epithelium,with or without stromal ulceration,due to corneal nerve deficiency caused by a variety of etiologies.The treatment options for neurotrophic keratopathy are limited.In this study,an ophthalmic solution was constructed from a chitosan-based thermosensitive hydrogel with long-term release of murine nerve growth factor(CTH-mNGF).Its effectiveness was evaluated in corneal denervation(CD)mice and patients with neurotrophic keratopathy.In the preclinical setting,CTH-mNGF was assessed in a murine corneal denervation model.CTH-mNGF was transparent,thermosensitive,and ensured sustained release of mNGF for over 20 hours on the ocular surface,maintaining the local mNGF concentration around 1300 pg/mL in vivo.Corneal denervation mice treated with CTH-mNGF for 10 days showed a significant increase in corneal nerve area and total corneal nerve length compared with non-treated and CTH treated mice.A subsequent clinical trial of CTH-mNGF was conducted in patients with stage 2 or 3 neurotrophic keratopathy.Patients received topical CTH-mNGF twice daily for 8 weeks.Fluorescein sodium images,Schirmer’s test,intraocular pressure,Cochet-Bonnet corneal perception test,and best corrected visual acuity were evaluated.In total,six patients(total of seven eyes)diagnosed with neurotrophic keratopathy were enrolled.After 8 weeks of CTH-mNGF treatment,all participants showed a decreased area of corneal epithelial defect,as stained by fluorescence.Overall,six out of seven eyes had fluorescence staining scores<5.Moreover,best corrected visual acuity,intraocular pressure,Schirmer’s test and Cochet-Bonnet corneal perception test results showed no significant improvement.An increase in corneal nerve density was observed by in vivo confocal microscopy after 8 weeks of CTH-mNGF treatment in three out of seven eyes.This study demonstrates that CTH-mNGF is transparent,thermosensitive,and has sustained-release properties.Its effectiveness in healing corneal epithelial defects in all eyes with neurotrophic keratopathy suggests CTH-mNGF has promising application prospects in the treatment of neurotrophic keratopathy,being convenient and cost effective.
基金This work was financially supported by the National Natural Science Foundation of China(No.52171144)the Fundamental Research Special Zone Program of Shanghai Jiao Tong University(No.21TQ1400215).
文摘The synthesis of carbide coatings on graphite substrates using molten salt synthesis(MSS),has garnered significant interest due to its cost-effective nature.This study investigates the reaction process and growth kinetics involved in MSS,shedding light on key aspects of the process.The involvement of Ti powder through liquid-phase mass transfer is revealed,where the diffusion distance and quantity of Ti powder play a crucial role in determining the reaction rate by influencing the C content gradient on both sides of the carbide.Furthermore,the growth kinetics of the carbide coating are predominantly governed by the diffusion behavior of C within the carbide layer,rather than the chemical reaction rate.To analyze the kinetics,the thickness of the carbide layer is measured with respect to heat treatment time and temperature,unveiling a parabolic relationship within the temperature range of 700-1300℃.The estimated activation energy for the reaction is determined to be 179283 J·mol^(-1).These findings offer valuable insights into the synthesis of carbide coatings via MSS,facilitating their optimization and enhancing our understanding of their growth mechanisms and properties for various applications.
基金supported by the National Natural Science Foundation of China(22008221)Startup Research Fund of Zhengzhou University(32211716)+3 种基金Key Scientific Research Projects of Colleges and Universities in Henan Province(21A530005)Guangdong Basic and Applied Basic Research Foundation(2021A1515110789)Hunan Provincial Natural Science Foundation of China(2022JJ40431)Zhengzhou Collaborative Innovation Major Project。
文摘Spent cathode carbon(SCC)from aluminum electrolysis is a potential graphite resource.However,full use of the SCC remains a challenge,since it contains many hazardous substances(e.g.,fluoride salts,cyanides),encapsulated within the thick carbon layers and thus posing serious environmental concerns.This work presents a chemical oxidative exfoliation route to achieve the recycling of SCC and the decontaminated SCC with high-valued graphene oxide(GO)-like carbon structures(SCC-GO)is applied as an excellent adsorbent for organic pollutants.Specifically,after the oxidative exfoliation,the embedded hazardous constituents are fully exposed,facilitating their subsequent removal by aqueous leaching.Moreover,benefiting from the enhanced specific surface areas along with abundant O-containing functional groups,the as-produced SCC-GO,shows an adsorption capacity as high as 347 mg·g^(-1)when considering methylene blue as a pollutant model,which exceeds most of the recently reported carbon-based adsorbents.Our study provides a feasible solution for the efficient recycling of hazardous carbonaceous wastes.
基金This work was supported by the National Natural Science Foundation of China(No.21807117)Hunan Provincial Natural Science Foundation of China(Nos.2022JJ20052 and 2021JJ30788)+1 种基金the Science and Technology Innovation Program of Hunan Province(No.2022RC1109)Central South University Innovation-Driven Research Programme(No.2023CXQD021).
文摘Artificial cells are constructed from synthetic materials to imitate the biological functions of natural cells.By virtue of nanoengineering techniques,artificial cells with designed biomimetic functions provide alternatives to natural cells,showing vast potential for biomedical applications.Especially in cancer treatment,the deficiency of immunoactive macrophages results in tumor progression and immune resistance.To overcome the limitation,a BaSO_(4)@ZIF-8/transferrin(TRF)nanomacrophage(NMΦ)is herein constructed as an alternative to immunoactive macrophages.Alike to natural immunoactive macrophages,NMΦis stably retained in tumors through the specific affinity of TRF to tumor cells.Zn^(2+)as an“artificial cytokine”is then released from the ZIF-8 layer of NMΦunder tumor microenvironment.Similar as proinflammatory cytokines,Zn^(2+)can trigger cell anoikis to expose tumor antigens,which are selectively captured by the BaSO_(4)cavities.Therefore,the hierarchical nanostructure of NMΦs allows them to mediate immunogenic death of tumor cells and subsequent antigen capture for T cell activation to fabricate long-term antitumor immunity.As a proof-of-concept,the NMΦmimics the biological functions of macrophage,including tumor residence,cytokine release,antigen capture and immune activation,which is hopeful to provide a paradigm for the design and biomedical applications of artificial cells.
基金supported by the Special Funds for Fundamental Scientific Research Funds of Central Universities(JUSRP21115)Independent Research Project Funding Project of Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment Technology(FMZ201902).
文摘The molded pulp,a product of three-dimensional papermaking technology,is environmentally friendly and has a low environmental impact due to its ability to decompose quickly in the natural environment after disposal.The application of molded pulp for food packaging can replace or reduce the use of plastic food packaging.Researchers extract fibers from plants for the production of safe and hygienic molded pulp for food packaging,and they also study and enhance the qualities of molded pulp to broaden its use in the food industry.This paper reviews the sources and varieties of plant fiber used in molded pulp for food packaging,as well as research on the improvement and optimization of the performance of molded pulp products.Additionally,issues with molded pulp’s actual use for food packaging are reviewed,along with the potential for future research.This work can serve as a reference for molded pulp applications and research in the food industry in the future.
基金This research was supported by the National Natural Science Foundation of China(31672425)Shaanxi Province Key R&D Program(2018ZDXM-NY-043,2020ZDLNY02–04).
文摘Background:Goat milk is very similar to human milk in terms of its abundant nutrients and ease of digestion.To derive greater economic benefit,farmers require more female offspring(does);however,the buck-to-doe offspring sex ratio is approximately 50%.At present,artificial insemination after the separation of X/Y sperm using flow cytometry is the primary means of controlling the sex of livestock offspring.However,flow cytometry has not been successfully utilised for the separation of X/Y sperm aimed at sexing control in dairy goats.Results:In this study,a novel,simple goat sperm sexing technology that activates the toll-like receptor 7/8(TLR7/8),thereby inhibiting X-sperm motility,was investigated.Our results showed that the TLR7/8 coding goat Xchromosome was expressed in approximately 50%of round spermatids in the testis and sperm,as measured from cross-sections of the epididymis and ejaculate,respectively.Importantly,TLR7/8 was located at the tail of the Xsperm.Upon TLR7/8 activation,phosphorylated forms of glycogen synthase kinaseα/β(GSK3α/β)and nuclear factor kappa-B(NF-κB)were detected in the X-sperm,causing reduced mitochondrial activity,ATP levels,and sperm motility.High-motility Y-sperm segregated to the upper layer and the low-motility X-sperm,to the lower layer.Following in vitro fertilisation using the TLR7/8-activated sperm from the lower layer,80.52±6.75%of the embryos were XX females.The TLR7/8-activated sperm were subsequently used for in vivo embryo production via the superovulatory response;nine embryos were collected from the uterus of two does that conceived.Eight of these were XX embryos,and one was an XY embryo.Conclusions:Our study reveals a novel TLR7/8 signalling mechanism that affects X-sperm motility via the GSK3α/β-hexokinase pathway;this technique could be used to facilitate the efficient production of sexed dairy goat embryos.
基金supported by the School of Energy Resources at the University of WyomingThe GPU hardware used in this study was purchased using the NSF Grant EAR-0930040
文摘We have successfully ported an arbitrary highorder discontinuous Galerkin method for solving the threedimensional isotropic elastic wave equation on unstructured tetrahedral meshes to multiple Graphic Processing Units (GPUs) using the Compute Unified Device Architecture (CUDA) of NVIDIA and Message Passing Interface (MPI) and obtained a speedup factor of about 28.3 for the single-precision version of our codes and a speedup factor of about 14.9 for the double-precision version. The GPU used in the comparisons is NVIDIA Tesla C2070 Fermi, and the CPU used is Intel Xeon W5660. To effectively overlap inter-process communication with computation, we separate the elements on each subdomain into inner and outer elements and complete the computation on outer elements and fill the MPI buffer first. While the MPI messages travel across the network, the GPU performs computation on inner elements, and all other calculations that do not use information of outer elements from neighboring subdomains. A significant portion of the speedup also comes from a customized matrix-matrix multiplication kernel, which is used extensively throughout our program. Preliminary performance analysis on our parallel GPU codes shows favorable strong and weak scalabilities.
基金supported by the National Natural Science Foundation of China(22078277 and 21908185)the Project of Hunan Provincial Natural Science Foundation of China(2020JJ5532 and 2021JJ30658)+5 种基金the Degree&Postgraduate Education Reform Project of Hunan Provincial(XDCX2019B095 and CX20190489)the Guang Dong Basic and Applied Basic Research Foundation(2021A1515110789 and 2021A1515110136)the Science and Technology Innovation Program of Hunan Province(2021RC2089)the Research Initiation Project of Xiangtan University(KZ08076)the Environment-friendly Chemical Process Integration Technology Hunan Province Key Laboratorythe Collaborative Innovation Center of New Chemical Technologies for Environmental Benignity and Efficient Resource Utilization。
文摘2-methyl-tetrahydrofuran(2-MTHF)is a promising biofuel or fuel additive with excellent burning property,a versatile new-style solvent in organic synthesis,and an important medical intermediate.In this work,a one-pot selective conversion of furfural(FA)into 2-MTHF was carried out over Zn doped Co/NC catalysts.The Zn-Co/NC-1 catalyst with trace Zn dopant(0.38 wt%)exhibited the best performance(yield of 2-MTHF:93.8%).According to the characterizations,it was found that the Zn not only incorporates into the carbon support but also partially dopes into Co nanoparticles.Subsequently,theoretical calculations demonstrated that the doping of Zn in carbon support can effectively enhance the electron transfer from the support to the metallic Co particle,leading to the electron-rich Co surface.The presence of Zn was found to promote the dissociation of hydrogen and to lower the diffusion barrier of hydrogen atom,in favor of the hydrogenation/hydrodeoxygenation processes.Furthermore,the Zn doped models exhibit much lower barrier in breaking C–OH bond of FOL,resulting in higher activity for hydrodeoxygenation of FOL.These theoretical results are consistent with the in situ FT-IR analysis of adsorption substrates and intermediates over Zn doped catalyst.This work reveals the mechanism of dopant Zn tailoring the electronic structure and catalytic performance of active sites,providing a deep insight into the design of economical and high-performance catalysts for hydrogenation/hydrodeoxygenation of biomass feedstocks.
基金The work is supported by the National Key Research Development Program of China(2016QY01W0200)the National Natural Science Foundation of China NSFC(U1636101,U1736211,U1636219).
文摘Image classifiers that based on Deep Neural Networks(DNNs)have been proved to be easily fooled by well-designed perturbations.Previous defense methods have the limitations of requiring expensive computation or reducing the accuracy of the image classifiers.In this paper,we propose a novel defense method which based on perceptual hash.Our main goal is to destroy the process of perturbations generation by comparing the similarities of images thus achieve the purpose of defense.To verify our idea,we defended against two main attack methods(a white-box attack and a black-box attack)in different DNN-based image classifiers and show that,after using our defense method,the attack-success-rate for all DNN-based image classifiers decreases significantly.More specifically,for the white-box attack,the attack-success-rate is reduced by an average of 36.3%.For the black-box attack,the average attack-success-rate of targeted attack and non-targeted attack has been reduced by 72.8%and 76.7%respectively.The proposed method is a simple and effective defense method and provides a new way to defend against adversarial samples.
文摘Synthetic seismograms generated by solving the seismic wave equation using numerical methods are being widely used in seismology. For fully three-dimensional seismic structure models, the generation of these synthetic seismograms may require large amount of computing resources. Conventional high-performance computer clusters may not provide a cost-effective solution to this type of applications. The newly emerging cloud-computing platform provides an alternative solution. In this paper, we describe our implementation of a synthetic seismogram generator based on the reciprocity principle using the Windows Azure cloud application framework. Our preliminary experiment shows that our cloud-based synthetic seismogram generator provides a costeffective and numerically efficient approach for computing synthetic seismograms based on the reciprocity principle.
基金This work was supported by the National Key Research and Development Program of China(2016YFB1001300)the National Natural Science Foundation of China(No.11527901)the Fundamental Research Funds for the Central Universities.
文摘Electronic skin,a class of wearable electronic sensors that mimic the functionalities of human skin,has made remarkable success in applications including health monitoring,human-machine interaction and electronic-biological interfaces.While electronic skin continues to achieve higher sensitivity and faster response,its ultimate performance is fundamentally limited by the nature of low-frequency AC currents.Herein,highly sensitive skin-like wearable optical sensors are demonstrated by embedding glass micro/nanofibers(MNFs)in thin layers of polydimethylsiloxane(PDMS).Enabled by the transition from guided modes into radiation modes of the waveguiding MNFs upon external stimuli,the skin-like optical sensors show ultrahigh sensitivity(1870 k·Pa^-1),low detection limit(7 mPa)and fast response(10μs)for pressure sensing,significantly exceeding the performance metrics of state-of-the-art electronic skins.Electromagnetic interference(EMI)-free detection of high-frequency vibrations,wrist pulse and human voice are realized.Moreover,a five-sensor optical data glove and a 2×2-MNF tactile sensor are demonstrated.These initial results pave the way toward a new category of optical devices ranging from ultrasensitive wearable sensors to optical skins.
基金National Natural Science Foundation of China under (Grant Nos. 52011530181 and 51831011)Shanghai Science and Technology Commission under Grant No. 20S31900100+1 种基金Guangxi Science and Technology Program:The central government guides the local sciencetechnology development science and technology innovation base project (Guike Jizi[2020]No. 198):Basic Research and Transformation Technology Innovation Base of Bone and Joint Degenerative Diseases
文摘Bioprinting is an emerging additive manufacturing technology that has enormous potential in bone implantation and repair. The insufficient accuracy of the shape of bioprinted parts is a primary clinical barrier that prevents widespread utilization of bioprinting,especially for bone design with high-resolution requirements. During the last five years, the use of computer vision for process control has been widely practiced in the manufacturing field. Computer vision can improve the performance of bioprinting for bone research with respect to various aspects, including accuracy, resolution, and cell survival rate. Hence, computer vision plays a substantial role in addressing the current defect problem in bioprinting for bone research. In this review, recent advances in the application of computer vision in bioprinting for bone research are summarized and categorized into three groups based on different defect types: bone scaffold process control, deep learning, and cell viability models. The collection of printing parameters,data processing, and feedback of bioprinting information, which ultimately improves printing capabilities, are further discussed. We envision that computer vision may offer opportunities to accelerate bioprinting development and provide a new perception for bone research.
文摘In recent years,deep learning models represented by convolutional neural networks have shown incomparable advantages in image recognition and have been widely used in various fields.In the diagnosis of sucker-rod pump working conditions,due to the lack of a large-scale dynamometer card data set,the advantages of a deep convolutional neural network are not well reflected,and its application is limited.Therefore,this paper proposes an intelligent diagnosis method of the working conditions in sucker-rod pump wells based on transfer learning,which is used to solve the problem of too few samples in a dynamometer card data set.Based on the dynamometer cards measured in oilfields,image classification and preprocessing are conducted,and a dynamometer card data set including 10 typical working conditions is created.On this basis,using a trained deep convolutional neural network learning model,model training and parameter optimization are conducted,and the learned deep dynamometer card features are transferred and applied so as to realize the intelligent diagnosis of dynamometer cards.The experimental results show that transfer learning is feasible,and the performance of the deep convolutional neural network is better than that of the shallow convolutional neural network and general fully connected neural network.The deep convolutional neural network can effectively and accurately diagnose the working conditions of sucker-rod pump wells and provide an effective method to solve the problem of few samples in dynamometer card data sets.
基金This work was financially supported by the National Natural Science Foundation of China(Grant Nos.51975441 and 52271135)the Innovation Funding Project of National Engineering and Research Center for Commercial Aircraft Manufacturing(No.COMAC-SFGS-2022-1871)+6 种基金the Major Research Plan of the National Natural Science Foundation of China(Grant No.92266102)the Natural Science Foundation of Hubei Province(Grant No.2022CFB492)the Knowledge Innovation Program of Wuhan-Basic Research(No.2022010801010174)the Application Foundation Frontier Project of Wuhan(No.2020010601012171)the“Chu Tian Scholar”project of Hubei Province(No.CTXZ2017-05)the Overseas Expertise Introduction Project for Discipline Innovation(No.B17034)Innovative Research Team Development Program of Ministry of Education of China(No.IRT_17R83).
文摘In order to improve the properties of titanium alloys manufactured by laser melting deposition(LMD),the electroshocking treatment(EST)was proposed in this work.The effects of EST on microstructure and mechanical properties of LMD Ti-6.5Al-3.5Mo-1.5Zr-0.3Si were investigated.The results showed that the width of the heat affected band decreased and disappeared under the thermal and athermal effects of EST,resulting in the uniform microstructure.In the microstructure,theαlaths became coarser gradually,and the quantity ofα/βinterface was reduced.The reduction of the quantity ofα/βinterface leads to make less resistant to dislocation,resulting in the reduction in hardness and strength.The discontinuous grain boundaryαphase and nucleationαcolony near grain boundary inhibited the crack propagation and improved the ductility.Summary,EST can manipulate the microstructure and improve the mechanical properties of LMD titanium alloys.
基金the National Natural Science Foundation of China(Nos.22008221 and 22238013)the Foundation of State Key Laboratory of Biobased Material and Green Papermaking,Qilu University of Technology,Shandong Academy of Sciences(No.GZKF202010).
文摘Carbon-supported single-atom catalysts were found to suffer reversible deactivation in catalytic hydrogenation,but the mechanism is still unclear.Herein,nitro compounds hydrogenation catalyzed by N-doped carbon-supported Co single atom(Co1/NC)was taken as a model to uncover the mechanism of the reversible deactivation phenomenon.Co1/NC exhibited moderate adsorption towards the substrate molecules(i.e.,nitro compounds or related intermediates),which could be strengthened by the confinement effect from the porous structure.Consequently,substrate molecules tend to accumulate within the pore channel,especially micropores that host Co1,making it difficult for the reactants to access the active sites and finally leading to their deactivation.The situation could be even worse when the substrate molecules possess a large size.Nevertheless,the catalytic activity of Co1/NC could be restored via a simple thermal treatment,which could remove the adsorbates within the pore channel,hence releasing active sites that were originally inaccessible to reactants.