期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Improving the Accuracy of Vegetation Index Retrieval for Biomass by Combining Ground-UAV Hyperspectral Data-A New Method for Inner Mongolia Typical Grasslands
1
作者 Ruochen Wang Jianjun Dong +3 位作者 lishan jin Yuyan Sun Taogetao Baoyin Xiumei Wang 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第2期387-411,共25页
Grassland biomass is an important parameter of grassland ecosystems.The complexity of the grassland canopy vegetation spectrum makes the long-term assessment of grassland growth a challenge.Few studies have explored t... Grassland biomass is an important parameter of grassland ecosystems.The complexity of the grassland canopy vegetation spectrum makes the long-term assessment of grassland growth a challenge.Few studies have explored the original spectral information of typical grasslands in Inner Mongolia and examined the influence of spectral information on aboveground biomass(AGB)estimation.In order to improve the accuracy of vegetation index inversion of grassland AGB,this study combined ground and Unmanned Aerial Vehicle(UAV)remote sensing technology and screened sensitive bands through ground hyperspectral data transformation and correlation analysis.The narrow band vegetation indices were calculated,and ground and airborne hyperspectral inversion models were established.Finally,the accuracy of the model was verified.The results showed that:(1)The vegetation indices constructed based on the ASD FieldSpec 4 and the UAV were significantly correlated with the dry and fresh weight of AGB.(2)The comparison between measured R^(2) with the prediction R^(2) indicated that the accuracy of the model was the best when using the Soil-Adjusted Vegetation Index(SAVI)as the independent variable in the analysis of AGB(fresh weight/dry weight)and four narrow-band vegetation indices.The SAVI vegetation index showed better applicability for biomass monitoring in typical grassland areas of Inner Mongolia.(3)The obtained ground and airborne hyperspectral data with the optimal vegetation index suggested that the dry weight of AGB has the best fitting effect with airborne hyperspectral data,where y=17.962e^(4.672x),the fitting R^(2) was 0.542,the prediction R^(2)was 0.424,and RMSE and REE were 57.03 and 0.65,respectively.Therefore,established vegetation indices by screening sensitive bands through hyperspectral feature analysis can significantly improve the inversion accuracy of typical grassland biomass in Inner Mongolia.Compared with ground monitoring,airborne hyperspectral monitoring better reflects the inversion of actual surface biomass.It provides a reliable modeling framework for grassland AGB monitoring and scientific and technological support for grazing management. 展开更多
关键词 Aboveground biomass inversion model vegetation index unmanned aerial vehicle typical grassland
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部