The reverse martensitic transformation of TiNi shape memory alloy fibers embedded in a pure aluminum matrix was studied in this paper. Results showed that the phase composition of the TiNi alloy fibers prior to prestr...The reverse martensitic transformation of TiNi shape memory alloy fibers embedded in a pure aluminum matrix was studied in this paper. Results showed that the phase composition of the TiNi alloy fibers prior to prestraining at the room temperature had a significant influence on the differential scanning calorimetry (DSC) results of the composites. By a comparison to the high temperature X-ray diffraction (XRD) results, it was confirmed that the martensite was divided into two groups: the self-accommodating martensite (SAM) and the preferentially oriented martensite (POM). The evolving process of the separation of martensite was discussed.展开更多
In this paper, a TiNi shape memory alloy fiber Ni matrix composite was fabricated by an electroplating method using TiNi alloy as the cathode and Ni as the anode. The constrained martensitic transformation behaviors o...In this paper, a TiNi shape memory alloy fiber Ni matrix composite was fabricated by an electroplating method using TiNi alloy as the cathode and Ni as the anode. The constrained martensitic transformation behaviors of the TiNi alloy were studied by differential scanning calorimeter (DSC), and the results showed that two endothermic peaks appear on the DSC heating curves and the reverse transformation temperatures increase with increasing prestrain levels. Moreover, comparing to the free transformation, the temperature window of the constrained reverse transformation is widely expanded due to the influence of recovery stress.展开更多
基金the National Natural Science Foundation of China under grant No. 59731030.
文摘The reverse martensitic transformation of TiNi shape memory alloy fibers embedded in a pure aluminum matrix was studied in this paper. Results showed that the phase composition of the TiNi alloy fibers prior to prestraining at the room temperature had a significant influence on the differential scanning calorimetry (DSC) results of the composites. By a comparison to the high temperature X-ray diffraction (XRD) results, it was confirmed that the martensite was divided into two groups: the self-accommodating martensite (SAM) and the preferentially oriented martensite (POM). The evolving process of the separation of martensite was discussed.
基金supported by the National Natural Science Foundation of China,No.50071037the China Postdoctoral Science Foundation
文摘In this paper, a TiNi shape memory alloy fiber Ni matrix composite was fabricated by an electroplating method using TiNi alloy as the cathode and Ni as the anode. The constrained martensitic transformation behaviors of the TiNi alloy were studied by differential scanning calorimeter (DSC), and the results showed that two endothermic peaks appear on the DSC heating curves and the reverse transformation temperatures increase with increasing prestrain levels. Moreover, comparing to the free transformation, the temperature window of the constrained reverse transformation is widely expanded due to the influence of recovery stress.