为更好地模拟小麦籽粒(麦粒)振动筛分过程,该文在现有离散元接触模型基础上,通过EDEM软件应用程序编程接口,构建了一种麦粒黏弹塑性接触模型。该接触模型法向方向通过将Kuwabara and Kono非线性黏弹性接触模型中的黏性耗散项引入Thornto...为更好地模拟小麦籽粒(麦粒)振动筛分过程,该文在现有离散元接触模型基础上,通过EDEM软件应用程序编程接口,构建了一种麦粒黏弹塑性接触模型。该接触模型法向方向通过将Kuwabara and Kono非线性黏弹性接触模型中的黏性耗散项引入Thornton滞回接触模型进行构建;切向方向采用简化Thornton切向接触模型;滚动摩擦力矩计算同Hertz-Mindlin(no slip)接触模型。法向模型参数标定采用单轴加载-卸载试验、碰撞试验,分别构建了模拟-试验接触力误差平方和与麦粒屈服重叠量、恢复系数与法向阻尼系数的二阶回归方程,得到麦粒屈服重叠量为7.63×10-6 m,麦粒-麦粒/钢板法向阻尼系数分别为190.68和306.65。切向模型参数利用旋转鼓试验进行标定,得到最佳麦粒-麦粒/钢板静摩擦系数组合为0.40和0.44。最后利用振动筛分试验对所标定参数进行验证,模拟与试验所得筛下麦粒质量分数最大误差为8.97%,模拟中筛下物分布规律与试验结果无显著性差异,表明所建立的接触模型及标定的参数能够很好地模拟麦粒振动筛分过程。该文也可为其他农业物料黏弹塑性接触模型构建及其参数标定提供参考。展开更多
Since the design of the subsoiler is a complex work,the interaction between the subsoiler and soil was investigated by using Distinct Element Method(DEM)in this study.Based on the traditional discrete element theory,t...Since the design of the subsoiler is a complex work,the interaction between the subsoiler and soil was investigated by using Distinct Element Method(DEM)in this study.Based on the traditional discrete element theory,the 3D model of soil particles and the subsoiler were established after considering the liquid bridge force between soil particles.The operating resistance curves of the subsoiler were achieved after the DEM simulation at a speed of 1 m/s,and three depths of 180 mm,220 mm and 260 mm,respectively.The simulation curves agreed well with the field experimental results based on relative errors of 2.96%,14.95%and 7.15%,respectively,at three depths.All these data proved that it was feasible and favorable to analyze the performance of the subsoiler by using the DEM and it is of important significance for studying and further optimizing the structure of the subsoiler.展开更多
Generally,a subsoiler is comprised of a shank and a point.The point shape has a significant effect on the draft force of a subsoiler.In this study,the draft force of subsoilers with four different points were compared...Generally,a subsoiler is comprised of a shank and a point.The point shape has a significant effect on the draft force of a subsoiler.In this study,the draft force of subsoilers with four different points were compared under the speed of 0.8 m/s and the depth of 350 mm in the soil bin.Discrete Element Method(DEM)was applied in simulating the working process of the subsoiler.The stiffness of soil particles used in DEM was calibrated by comparing the simulated draft force of a standard arc-shaped subsoiler with the experiment.The calibrated soil particle stiffness was 1.1×104 N/m.The validated model was then used to compare the draft force of subsoilers with four different points under the same condition in the test.Results showed that different points would cause different draft forces.The subsoiler with short chisel point caused the smallest draft force(2885 N)while the point with short face and wings had the largest force(4474 N).The relative errors of the simulated results were less than 4%,which proved that DEM was an effective way for predicting the draft force of subsilers.The velocity field and contact force filed could show the movement of soil around the subsoiler.展开更多
文摘为更好地模拟小麦籽粒(麦粒)振动筛分过程,该文在现有离散元接触模型基础上,通过EDEM软件应用程序编程接口,构建了一种麦粒黏弹塑性接触模型。该接触模型法向方向通过将Kuwabara and Kono非线性黏弹性接触模型中的黏性耗散项引入Thornton滞回接触模型进行构建;切向方向采用简化Thornton切向接触模型;滚动摩擦力矩计算同Hertz-Mindlin(no slip)接触模型。法向模型参数标定采用单轴加载-卸载试验、碰撞试验,分别构建了模拟-试验接触力误差平方和与麦粒屈服重叠量、恢复系数与法向阻尼系数的二阶回归方程,得到麦粒屈服重叠量为7.63×10-6 m,麦粒-麦粒/钢板法向阻尼系数分别为190.68和306.65。切向模型参数利用旋转鼓试验进行标定,得到最佳麦粒-麦粒/钢板静摩擦系数组合为0.40和0.44。最后利用振动筛分试验对所标定参数进行验证,模拟与试验所得筛下麦粒质量分数最大误差为8.97%,模拟中筛下物分布规律与试验结果无显著性差异,表明所建立的接触模型及标定的参数能够很好地模拟麦粒振动筛分过程。该文也可为其他农业物料黏弹塑性接触模型构建及其参数标定提供参考。
基金This study was funded by the National Science and Technology Supporting Plan(No.2011BAD29B08)the“111”Project(No.B12007).
文摘Since the design of the subsoiler is a complex work,the interaction between the subsoiler and soil was investigated by using Distinct Element Method(DEM)in this study.Based on the traditional discrete element theory,the 3D model of soil particles and the subsoiler were established after considering the liquid bridge force between soil particles.The operating resistance curves of the subsoiler were achieved after the DEM simulation at a speed of 1 m/s,and three depths of 180 mm,220 mm and 260 mm,respectively.The simulation curves agreed well with the field experimental results based on relative errors of 2.96%,14.95%and 7.15%,respectively,at three depths.All these data proved that it was feasible and favorable to analyze the performance of the subsoiler by using the DEM and it is of important significance for studying and further optimizing the structure of the subsoiler.
基金the National Science and Technology Supporting Plan of China(2011BAD29B08).
文摘Generally,a subsoiler is comprised of a shank and a point.The point shape has a significant effect on the draft force of a subsoiler.In this study,the draft force of subsoilers with four different points were compared under the speed of 0.8 m/s and the depth of 350 mm in the soil bin.Discrete Element Method(DEM)was applied in simulating the working process of the subsoiler.The stiffness of soil particles used in DEM was calibrated by comparing the simulated draft force of a standard arc-shaped subsoiler with the experiment.The calibrated soil particle stiffness was 1.1×104 N/m.The validated model was then used to compare the draft force of subsoilers with four different points under the same condition in the test.Results showed that different points would cause different draft forces.The subsoiler with short chisel point caused the smallest draft force(2885 N)while the point with short face and wings had the largest force(4474 N).The relative errors of the simulated results were less than 4%,which proved that DEM was an effective way for predicting the draft force of subsilers.The velocity field and contact force filed could show the movement of soil around the subsoiler.