期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Dynamic phosphorylation of CENP-N by CDK1 guides accurate chromosome segregation in mitosis
1
作者 Ran Liu Zhen Dou +16 位作者 Tian Tian Xinjiao Gao Lili Chen Xiao Yuan Chunyue Wang Jiahe Hao Ping Gui McKay Mullen Felix Aikhionbare liwen niu Guoqiang Bi Peng Zou Xuan Zhang Chuanhai Fu Xuebiao Yao Jianye Zang Xing Liu 《Journal of Molecular Cell Biology》 SCIE CAS CSCD 2023年第6期53-64,共12页
In mitosis,accurate chromosome segregation depends on the kinetochore,a supermolecular machinery that couples dynamic spin-dle microtubules to centromeric chromatin.However,the structure–activity relationship of the ... In mitosis,accurate chromosome segregation depends on the kinetochore,a supermolecular machinery that couples dynamic spin-dle microtubules to centromeric chromatin.However,the structure–activity relationship of the constitutive centromere-associated network(CCAN)during mitosis remains uncharacterized.Building on our recent cryo-electron microscopic analyses of human CCAN structure,we investigated how dynamic phosphorylation of human CENP-N regulates accurate chromosome segregation.Our mass spectrometric analyses revealed mitotic phosphorylation of CENP-N by CDK1,which modulates the CENP-L–CENP-N interaction for accurate chromosome segregation and CCAN organization.Perturbation of CENP-N phosphorylation is shown to prevent proper chromosome alignment and activate the spindle assembly checkpoint.These analyses provide mechanistic insight into a previously undefined link between the centromere–kinetochore network and accurate chromosome segregation. 展开更多
关键词 MITOSIS centromere CENP-N CDK1 PHOSPHORYLATION
原文传递
Defining A Global Map of Functional Group-based 3D Ligand-binding Motifs
2
作者 Liu Yang Wei He +5 位作者 Yuehui Yun Yongxiang Gao Zhongliang Zhu Maikun Teng Zhi Liang liwen niu 《Genomics, Proteomics & Bioinformatics》 SCIE CAS CSCD 2022年第4期765-779,共15页
Uncovering conserved 3D protein–ligand binding patterns on the basis of functional groups(FGs)shared by a variety of small molecules can greatly expand our knowledge of protein–ligand interactions.Despite that conse... Uncovering conserved 3D protein–ligand binding patterns on the basis of functional groups(FGs)shared by a variety of small molecules can greatly expand our knowledge of protein–ligand interactions.Despite that conserved binding patterns for a few commonly used FGs have been reported in the literature,large-scale identification and evaluation of FG-based 3D binding motifs are still lacking.Here,we propose a computational method,Automatic FG-based Three-dimensional Motif Extractor(AFTME),for automatic mapping of 3D motifs to different FGs of a specific ligand.Applying our method to 233 naturally-occurring ligands,we define 481 FG-binding motifs that are highly conserved across different ligand-binding pockets.Systematic analysis further reveals four main classes of binding motifs corresponding to distinct sets of FGs.Combinations of FG-binding motifs facilitate the binding of proteins to a wide spectrum of ligands with various binding affinities.Finally,we show that our FG–motif map can be used to nominate FGs that potentially bind to specific drug targets,thus providing useful insights and guidance for rational design of small-molecule drugs. 展开更多
关键词 Protein–ligand interaction Functional group Binding motif Computational method Drug design
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部