Objective This study aimed to identify differentially methylated genes(DMGs) associated with natural killer cells in patients with autoimmune thyroiditis(AIT), focusing on the influence of varying water iodine exposur...Objective This study aimed to identify differentially methylated genes(DMGs) associated with natural killer cells in patients with autoimmune thyroiditis(AIT), focusing on the influence of varying water iodine exposure levels.Methods Participants were divided into categories based on median water iodine(MWI)concentrations: iodine-fortified areas(IFA, MWI < 10 μg/L), iodine-adequate areas(IAA, 40 ≤ MWI ≤ 100μg/L), and iodine-excessive areas(IEA, MWI > 300 μg/L). A total of 176 matched AIT cases and controls were recruited and divided into 89, 40, and 47 pairs for IFA, IAA, and IEA, respectively. DMGs were identified using 850K Bead Chip analysis for 10/10 paired samples. Validation of DNA methylation and m RNA expression levels of the DMGs was conducted using Methyl Target^(TM) and QRT-PCR for 176/176paired samples.Results KLRC1, KLRC3, and SH2D1B were identified as significant DMGs. Validation revealed that KLRC1 was hypomethylated and highly expressed, whereas KLRC3 was hypermethylated and highly expressed in individuals with AIT. Furthermore, KLRC1 was hypomethylated and highly expressed in both IFA and IEA.Conclusion The DNA methylation status of KLRC1 and KLRC3 may play crucial roles in AIT pathogenesis. Additionally, DNA methylation of KLRC1 seems to be influenced by different iodine concentrations in water.展开更多
Background:This study aimed to elucidate the molecular mechanisms of solid diet introduction initiating the cellular growth and maturation of rumen tissues and characterize the shared and unique biological processes u...Background:This study aimed to elucidate the molecular mechanisms of solid diet introduction initiating the cellular growth and maturation of rumen tissues and characterize the shared and unique biological processes upon different solid diet regimes.Methods:Twenty-four Hu lambs were randomly allocated to three groups fed following diets:goat milk powder only(M,n=8),goat milk powder+alfalfa hay(MH,n=8),and goat milk powder+concentrate starter(MC,n=8).At 42 days of age,the lambs were slaughtered.Ruminal fluid sample was collected for analysis of concentration of volatile fatty acid(VFA)and microbial crude protein(MCP).The sample of the rumen wall from the ventral sac was collected for analysis of rumen papilla morphology and transcriptomics.Results:Compared with the M group,MH and MC group had a higher concentration of VFA,MCP,rumen weight,and rumen papilla area.The transcriptomic results of rumen wall showed that there were 312 shared differentially expressed genes(DEGs)between in“MH vs.M”and“MC vs.M”,and 232 or 796 unique DEGs observed in“MH vs.M”or“MC vs.M”,respectively.The shared DEGs were most enriched in VFA absorption and metabolism,such as peroxisome proliferator-activated receptor(PPAR)signaling pathway,butanoate metabolism,and synthesis and degradation of ketone bodies.Additionally,a weighted gene co-expression network analysis identified M16(2,052 genes)and M18(579 genes)modules were positively correlated with VFA and rumen wall morphology.The M16 module was mainly related to metabolism pathway,while the M18 module was mainly associated with signaling transport.Moreover,hay specifically depressed expression of genes involved in cytokine production,immune response,and immunocyte activation,and concentrate starter mainly altered nutrient transport and metabolism,especially ion transport,amino acid,and fatty acid metabolism.Conclusions:The energy production during VFA metabolism may drive the rumen wall development directly.The hay introduction facilitated establishment of immune function,while the concentrate starter enhanced nutrient transport and metabolism,which are important biological processes required for rumen development.展开更多
Rechargeable microbatteries are important power supplies for microelectronic devices.Two essential targets for rechargeable microbatteries are high output energy and minimal footprint areas.In addition to the developm...Rechargeable microbatteries are important power supplies for microelectronic devices.Two essential targets for rechargeable microbatteries are high output energy and minimal footprint areas.In addition to the development of new high-performance electrode materials,the device configurations of microbatteries also play an important role in enhancing the output energy and miniaturizing the footprint area.To make a clear vision on the design principle of rechargeable microbatteries,we firstly summarize the typical configurations of microbatteries.The advantages of different configurations are thoroughly discussed from the aspects of fabrication technologies and material engineering.Towards the high energy output at a minimal footprint area,a revolutionary design for microbatteries is of great importance.In this perspective,we review the progress of fabricating microbatteries based on the rolled-up nanotechnology,a derivative origami technology.Finally,we discussed the challenges and perspectives in the device design and materials optimization.展开更多
The pursuit of high energy density has promoted the development of high-performance lithium metal batteries(LMBs).However,the underestimated but non-negligible dendrites of Li anode have been observed to shorten batte...The pursuit of high energy density has promoted the development of high-performance lithium metal batteries(LMBs).However,the underestimated but non-negligible dendrites of Li anode have been observed to shorten battery lifespan.Herein,a composite separator(TiO_(2-x)@PP),in which TiO_(2)with electron-localized oxygen vacancies(TiO_(2-x))is coated on a commercial PP separator,is fabricated to homogenize lithium ion transport and stabilize the lithium anode interface.With the utilization of TiO_(2-x)@PP separators,the symmetric lithium metal battery displays enhanced cycle stability over 800 h under a high current density of 8 m A cm^(-2).Moreover,the LMBs assembled with high-loading LiFePO_(4)(9.24 mg cm^(-2))deliver a stable cycling performance over 900 cycles at a rate of 0.5 C.Comprehensive theoretical studies based on density functional theory(DFT)further unveil the mechanism.The favorable TiO_(2-x)is beneficial for facilitating fast Li+migration and impeding anions transfer.In addressing the Li dendrite issues,the use of TiO_(2-x)@PP separator potentially provides a facile and attractive strategy for designing well-performing LMBs,which are expected to meet the application requirements of rechargeable batteries.展开更多
We describe a versatile electrophile addition/SPR sequence of readily available cyclopropyl carbinols that affords multi-substituted carbonylated cyclopropanes with high stereo-fidelity.This approach tolerates various...We describe a versatile electrophile addition/SPR sequence of readily available cyclopropyl carbinols that affords multi-substituted carbonylated cyclopropanes with high stereo-fidelity.This approach tolerates various heteroatom electrophiles,migration of carbon moiety of all possible hybridization states,facile ring reorganization and natural compound valorization.The examples represent an unprecedented version of SPR wherein migration to a non-benzylic bulky tertiary carbo-cation is realized with promising enantiocontrol.展开更多
Freestanding MXene-based macroforms have gained significant attention as versatile components in electrochemical energy storage applications owing to their interconnected conductive network,strong mechanical strength,...Freestanding MXene-based macroforms have gained significant attention as versatile components in electrochemical energy storage applications owing to their interconnected conductive network,strong mechanical strength,and customizable surface chemistries derived from MXene nanosheets.This comprehensive review article encompasses key aspects related to the synthesis of MXene nanosheets,strategies for structure design and surface medication,surface modification,and the diverse fabrication methods employed to create freestanding MXene-based macroform architectures.The review also delves into the recent advancements in utilizing freestanding MXene macroforms for electrochemical energy storage applications,offering a detailed discussion on the significant progress achieved thus far.Notably,the correlation between the macroform’s structural attributes and its performance characteristics is thoroughly explored,shedding light on the critical factors influencing efficiency and durability.Despite the remarkable development,the review also highlights the existing challenges and presents future perspectives for freestanding MXenebased macroforms in the realms of high-performance energy storage devices.By addressing these challenges and leveraging emerging opportunities,the potential of freestanding MXene-based macroforms can be harnessed to enable groundbreaking advancements in the field of energy storage.展开更多
The rumen is the hallmark organ of ruminants and hosts a diverse ecosystem of microorganisms that facilitates efficient digestion of plant fibers.We analyzed 897 transcriptomes from three Cetartiodactyla lineages:rumi...The rumen is the hallmark organ of ruminants and hosts a diverse ecosystem of microorganisms that facilitates efficient digestion of plant fibers.We analyzed 897 transcriptomes from three Cetartiodactyla lineages:ruminants,camels and cetaceans,as well as data from ruminant comparative genomics and functional assays to explore the genetic basis of rumen functional innovations.We identified genes with relatively high expression in the rumen,of which many appeared to be recruited from other tissues.These genes show functional enrichment in ketone body metabolism,regulation of microbial community,and epithelium absorption,which are the most prominent biological processes involved in rumen innovations.Several modes of genetic change underlying rumen functional innovations were uncovered,including coding mutations,genes newly evolved,and changes of regulatory elements.We validated that the key ketogenesis rate-limiting gene(HMGCS2)with five ruminant-specific mutations was under positive selection and exhibits higher synthesis activity than those of other mammals.Two newly evolved genes(LYZ1 and DEFB1)are resistant to Gram-positive bacteria and thereby may regulate microbial community equilibrium.Furthermore,we confirmed that the changes of regulatory elements accounted for the majority of rumen gene recruitment.These results greatly improve our understanding of rumen evolution and organ evo-devo in general.展开更多
Graphene with linear energy dispersion and weak electron-phonon interaction is highly anticipated to harvest hot electrons in a broad wavelength range.However,the limited absorption and serious backscattering of hot-e...Graphene with linear energy dispersion and weak electron-phonon interaction is highly anticipated to harvest hot electrons in a broad wavelength range.However,the limited absorption and serious backscattering of hot-electrons result in inadequate quantum yields,especially in the mid-infrared range.Here,we report a macroscopic assembled graphene(nMAG)nanofilm/silicon heterojunction for ultrafast mid-infrared photodetection.The assembled Schottky diode works in 1.5-4.0μm at room temperature with fast response(20-30 ns,rising time,4 mm2 window)and high detectivity(1.61011 to 1.9109 Jones from 1.5 to 4.0μm)under the pulsed laser,outperforming single-layer-graphene/silicon photodetectors by 2-8 orders.These performances are attributed to the greatly enhanced photo-thermionic effect of electrons in nMAG due to its high light absorption(~40%),long carrier relaxation time(~20 ps),low work function(4.52 eV),and suppressed carrier number fluctuation.The nMAG provides a long-range platform to understand the hot-carrier dynamics in bulk 2D materials,leading to broadband and ultrafast MIR active imaging devices at room temperature.展开更多
基金supported by National Natural Science Foundation of China,82073490.
文摘Objective This study aimed to identify differentially methylated genes(DMGs) associated with natural killer cells in patients with autoimmune thyroiditis(AIT), focusing on the influence of varying water iodine exposure levels.Methods Participants were divided into categories based on median water iodine(MWI)concentrations: iodine-fortified areas(IFA, MWI < 10 μg/L), iodine-adequate areas(IAA, 40 ≤ MWI ≤ 100μg/L), and iodine-excessive areas(IEA, MWI > 300 μg/L). A total of 176 matched AIT cases and controls were recruited and divided into 89, 40, and 47 pairs for IFA, IAA, and IEA, respectively. DMGs were identified using 850K Bead Chip analysis for 10/10 paired samples. Validation of DNA methylation and m RNA expression levels of the DMGs was conducted using Methyl Target^(TM) and QRT-PCR for 176/176paired samples.Results KLRC1, KLRC3, and SH2D1B were identified as significant DMGs. Validation revealed that KLRC1 was hypomethylated and highly expressed, whereas KLRC3 was hypermethylated and highly expressed in individuals with AIT. Furthermore, KLRC1 was hypomethylated and highly expressed in both IFA and IEA.Conclusion The DNA methylation status of KLRC1 and KLRC3 may play crucial roles in AIT pathogenesis. Additionally, DNA methylation of KLRC1 seems to be influenced by different iodine concentrations in water.
基金This work was supported by the Project for Top Young Talents Program of College of Animal Science and Technology of Nanjing Agricultural University(DKQB201904)National Key Research and Development Plan(2018YFD0501900)+1 种基金Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX20_0603)Science and Technology Project of Huzhou City of China(2017GY18).
文摘Background:This study aimed to elucidate the molecular mechanisms of solid diet introduction initiating the cellular growth and maturation of rumen tissues and characterize the shared and unique biological processes upon different solid diet regimes.Methods:Twenty-four Hu lambs were randomly allocated to three groups fed following diets:goat milk powder only(M,n=8),goat milk powder+alfalfa hay(MH,n=8),and goat milk powder+concentrate starter(MC,n=8).At 42 days of age,the lambs were slaughtered.Ruminal fluid sample was collected for analysis of concentration of volatile fatty acid(VFA)and microbial crude protein(MCP).The sample of the rumen wall from the ventral sac was collected for analysis of rumen papilla morphology and transcriptomics.Results:Compared with the M group,MH and MC group had a higher concentration of VFA,MCP,rumen weight,and rumen papilla area.The transcriptomic results of rumen wall showed that there were 312 shared differentially expressed genes(DEGs)between in“MH vs.M”and“MC vs.M”,and 232 or 796 unique DEGs observed in“MH vs.M”or“MC vs.M”,respectively.The shared DEGs were most enriched in VFA absorption and metabolism,such as peroxisome proliferator-activated receptor(PPAR)signaling pathway,butanoate metabolism,and synthesis and degradation of ketone bodies.Additionally,a weighted gene co-expression network analysis identified M16(2,052 genes)and M18(579 genes)modules were positively correlated with VFA and rumen wall morphology.The M16 module was mainly related to metabolism pathway,while the M18 module was mainly associated with signaling transport.Moreover,hay specifically depressed expression of genes involved in cytokine production,immune response,and immunocyte activation,and concentrate starter mainly altered nutrient transport and metabolism,especially ion transport,amino acid,and fatty acid metabolism.Conclusions:The energy production during VFA metabolism may drive the rumen wall development directly.The hay introduction facilitated establishment of immune function,while the concentrate starter enhanced nutrient transport and metabolism,which are important biological processes required for rumen development.
基金the support and funding from China Scholarship Council(CSC)financial support by the Leibniz Program of the German Research Foundation(SCHM 1298/26-1)。
文摘Rechargeable microbatteries are important power supplies for microelectronic devices.Two essential targets for rechargeable microbatteries are high output energy and minimal footprint areas.In addition to the development of new high-performance electrode materials,the device configurations of microbatteries also play an important role in enhancing the output energy and miniaturizing the footprint area.To make a clear vision on the design principle of rechargeable microbatteries,we firstly summarize the typical configurations of microbatteries.The advantages of different configurations are thoroughly discussed from the aspects of fabrication technologies and material engineering.Towards the high energy output at a minimal footprint area,a revolutionary design for microbatteries is of great importance.In this perspective,we review the progress of fabricating microbatteries based on the rolled-up nanotechnology,a derivative origami technology.Finally,we discussed the challenges and perspectives in the device design and materials optimization.
基金financial support provided by the National Natural Science Foundation of China(52064049)the Key National Natural Science Foundation of Yunnan Province(2018FA028 and 2019FY003023)+1 种基金the International Joint Research Center for Advanced Energy Materials of Yunnan Province(202003AE140001)the Key Laboratory of Solid State Ions for Green Energy of Yunnan University(2019),the Analysis and Measurements Center of Yunnan University for the sample testing service,and the Postgraduate Research and Innovation Foundation of Yunnan University(2021Y348)。
文摘The pursuit of high energy density has promoted the development of high-performance lithium metal batteries(LMBs).However,the underestimated but non-negligible dendrites of Li anode have been observed to shorten battery lifespan.Herein,a composite separator(TiO_(2-x)@PP),in which TiO_(2)with electron-localized oxygen vacancies(TiO_(2-x))is coated on a commercial PP separator,is fabricated to homogenize lithium ion transport and stabilize the lithium anode interface.With the utilization of TiO_(2-x)@PP separators,the symmetric lithium metal battery displays enhanced cycle stability over 800 h under a high current density of 8 m A cm^(-2).Moreover,the LMBs assembled with high-loading LiFePO_(4)(9.24 mg cm^(-2))deliver a stable cycling performance over 900 cycles at a rate of 0.5 C.Comprehensive theoretical studies based on density functional theory(DFT)further unveil the mechanism.The favorable TiO_(2-x)is beneficial for facilitating fast Li+migration and impeding anions transfer.In addressing the Li dendrite issues,the use of TiO_(2-x)@PP separator potentially provides a facile and attractive strategy for designing well-performing LMBs,which are expected to meet the application requirements of rechargeable batteries.
基金Financial support of this work from National Natural Science Foundation of China(No.21871045)startup funding from Changchun University of Technology。
文摘We describe a versatile electrophile addition/SPR sequence of readily available cyclopropyl carbinols that affords multi-substituted carbonylated cyclopropanes with high stereo-fidelity.This approach tolerates various heteroatom electrophiles,migration of carbon moiety of all possible hybridization states,facile ring reorganization and natural compound valorization.The examples represent an unprecedented version of SPR wherein migration to a non-benzylic bulky tertiary carbo-cation is realized with promising enantiocontrol.
基金Startup Research Fund of Henan Academy of Sciences,Grant/Award Number:231817001China Scholarship Council(CSC)+2 种基金German Research Foundation(DFG),Grant/Award Number:448719339Sachsisches Staatsministerium furWissenschaft und Kunst(Sonderzuweisung zur Unterstutzung profilbestimmender Struktureinheiten)Federal Ministry of Education and Research(BMBF),Grant/Award Numbers:03XP0390C,03XP0254D。
文摘Freestanding MXene-based macroforms have gained significant attention as versatile components in electrochemical energy storage applications owing to their interconnected conductive network,strong mechanical strength,and customizable surface chemistries derived from MXene nanosheets.This comprehensive review article encompasses key aspects related to the synthesis of MXene nanosheets,strategies for structure design and surface medication,surface modification,and the diverse fabrication methods employed to create freestanding MXene-based macroform architectures.The review also delves into the recent advancements in utilizing freestanding MXene macroforms for electrochemical energy storage applications,offering a detailed discussion on the significant progress achieved thus far.Notably,the correlation between the macroform’s structural attributes and its performance characteristics is thoroughly explored,shedding light on the critical factors influencing efficiency and durability.Despite the remarkable development,the review also highlights the existing challenges and presents future perspectives for freestanding MXenebased macroforms in the realms of high-performance energy storage devices.By addressing these challenges and leveraging emerging opportunities,the potential of freestanding MXene-based macroforms can be harnessed to enable groundbreaking advancements in the field of energy storage.
基金supported by the National Natural Science Foundation of China(31822052,31572381)the National Thousand Youth Talents Plan to Y.J.+3 种基金National Natural Science Foundation of China(31660644)to S.H.National Natural Science Foundation of China(41422604)to S.L.The Villum Foundation(VKR 023447)the Independent Research Fund Denmark(8049-00098B)。
文摘The rumen is the hallmark organ of ruminants and hosts a diverse ecosystem of microorganisms that facilitates efficient digestion of plant fibers.We analyzed 897 transcriptomes from three Cetartiodactyla lineages:ruminants,camels and cetaceans,as well as data from ruminant comparative genomics and functional assays to explore the genetic basis of rumen functional innovations.We identified genes with relatively high expression in the rumen,of which many appeared to be recruited from other tissues.These genes show functional enrichment in ketone body metabolism,regulation of microbial community,and epithelium absorption,which are the most prominent biological processes involved in rumen innovations.Several modes of genetic change underlying rumen functional innovations were uncovered,including coding mutations,genes newly evolved,and changes of regulatory elements.We validated that the key ketogenesis rate-limiting gene(HMGCS2)with five ruminant-specific mutations was under positive selection and exhibits higher synthesis activity than those of other mammals.Two newly evolved genes(LYZ1 and DEFB1)are resistant to Gram-positive bacteria and thereby may regulate microbial community equilibrium.Furthermore,we confirmed that the changes of regulatory elements accounted for the majority of rumen gene recruitment.These results greatly improve our understanding of rumen evolution and organ evo-devo in general.
基金National Natural Science Foundation of China,Grant/Award Numbers:52090030,51973191,92164106,61874094China Postdoctoral Science Foundation,Grant/Award Number:2020M681819+2 种基金Fundamental Research Funds for the Central Universities,Grant/Award Numbers:K20200060,2021FZZX001-17Key Laboratory of Novel Adsorption and Separation Materials and Application Technology of Zhejiang Province,Grant/Award Number:512301-I21502Hundred Talents Program of Zhejiang University,Grant/Award Number:188020*194231701/113。
文摘Graphene with linear energy dispersion and weak electron-phonon interaction is highly anticipated to harvest hot electrons in a broad wavelength range.However,the limited absorption and serious backscattering of hot-electrons result in inadequate quantum yields,especially in the mid-infrared range.Here,we report a macroscopic assembled graphene(nMAG)nanofilm/silicon heterojunction for ultrafast mid-infrared photodetection.The assembled Schottky diode works in 1.5-4.0μm at room temperature with fast response(20-30 ns,rising time,4 mm2 window)and high detectivity(1.61011 to 1.9109 Jones from 1.5 to 4.0μm)under the pulsed laser,outperforming single-layer-graphene/silicon photodetectors by 2-8 orders.These performances are attributed to the greatly enhanced photo-thermionic effect of electrons in nMAG due to its high light absorption(~40%),long carrier relaxation time(~20 ps),low work function(4.52 eV),and suppressed carrier number fluctuation.The nMAG provides a long-range platform to understand the hot-carrier dynamics in bulk 2D materials,leading to broadband and ultrafast MIR active imaging devices at room temperature.