期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
High throughput screening of single atomic catalysts with optimized local structures for the electrochemical oxygen reduction by machine learning
1
作者 Hao Sun Yizhe Li +7 位作者 liyao gao Mengyao Chang Xiangrong Jin Boyuan Li Qingzhen Xu Wen Liu Mingyue Zhou Xiaoming Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期349-357,I0009,共10页
Single atomic catalysts(SACs),especially metal-nitrogen doped carbon(M-NC)catalysts,have been extensively explored for the electrochemical oxygen reduction reaction(ORR),owing to their high activity and atomic utiliza... Single atomic catalysts(SACs),especially metal-nitrogen doped carbon(M-NC)catalysts,have been extensively explored for the electrochemical oxygen reduction reaction(ORR),owing to their high activity and atomic utilization efficiency.However,there is still a lack of systematic screening and optimization of local structures surrounding active centers of SACs for ORR as the local coordination has an essential impact on their electronic structures and catalytic performance.Herein,we systematic study the ORR catalytic performance of M-NC SACs with different central metals and environmental atoms in the first and second coordination sphere by using density functional theory(DFT)calculation and machine learning(ML).The geometric and electronic informed overpotential model(GEIOM)based on random forest algorithm showed the highest accuracy,and its R^(2) and root mean square errors(RMSE)were 0.96 and 0.21,respectively.30 potential high-performance catalysts were screened out by GEIOM,and the RMSE of the predicted result was only 0.12 V.This work not only helps us fast screen high-performance catalysts,but also provides a low-cost way to improve the accuracy of ML models. 展开更多
关键词 Single atomic catalysts Coordination sphere High throughput screening Machine learning Oxygen reduction reaction
下载PDF
Current Status and Perspectives of Dual-Atom Catalysts Towards Sustainable Energy Utilization
2
作者 Yizhe Li Yajie Li +7 位作者 Hao Sun liyao gao Xiangrong Jin Yaping Li Zhi LV Lijun Xu Wen Liu Xiaoming Sun 《Nano-Micro Letters》 SCIE EI CAS 2024年第7期402-440,共39页
The exploration of sustainable energy utilization requires the imple-mentation of advanced electrochemical devices for efficient energy conversion and storage,which are enabled by the usage of cost-effective,high-perf... The exploration of sustainable energy utilization requires the imple-mentation of advanced electrochemical devices for efficient energy conversion and storage,which are enabled by the usage of cost-effective,high-performance electro-catalysts.Currently,heterogeneous atomically dispersed catalysts are considered as potential candidates for a wide range of applications.Compared to conventional cata-lysts,atomically dispersed metal atoms in carbon-based catalysts have more unsatu-rated coordination sites,quantum size effect,and strong metal-support interactions,resulting in exceptional catalytic activity.Of these,dual-atomic catalysts(DACs)have attracted extensive attention due to the additional synergistic effect between two adja-cent metal atoms.DACs have the advantages of full active site exposure,high selectiv-ity,theoretical 100%atom utilization,and the ability to break the scaling relationship of adsorption free energy on active sites.In this review,we summarize recent research advancement of DACs,which includes(1)the comprehensive understanding of the synergy between atomic pairs;(2)the synthesis of DACs;(3)characterization meth-ods,especially aberration-corrected scanning transmission electron microscopy and synchrotron spectroscopy;and(4)electrochemical energy-related applications.The last part focuses on great potential for the electrochemical catalysis of energy-related small molecules,such as oxygen reduction reaction,CO_(2) reduction reaction,hydrogen evolution reaction,and N_(2) reduction reaction.The future research challenges and opportunities are also raised in prospective section. 展开更多
关键词 Dual-atom catalysts Synergetic effect Electrocatalysis Oxygen reduction reaction CO_(2)reduction reaction Hydrogen evolution reaction N2 reduction reaction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部