期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
1
作者 杨质 陈源源 +7 位作者 刘卫强 李玉卿 丛利颖 吴琼 张红国 路清梅 张东涛 岳明 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期646-651,共6页
Macroscopic magnetic properties of magnets strongly depend on the magnetization process and the microstructure of the magnets.Complex materials such as hard-soft exchange-coupled magnets or just real technical materia... Macroscopic magnetic properties of magnets strongly depend on the magnetization process and the microstructure of the magnets.Complex materials such as hard-soft exchange-coupled magnets or just real technical materials with impurities and inhomogeneities exhibit complex magnetization behavior.Here we investigate the effects of size,volume fraction,and surroundings of inhomogeneities on the magnetic properties of an inhomogeneous magnetic material via micromagnetic simulations.The underlying magnetization reversal and coercivity mechanisms are revealed.Three different demagnetization characteristics corresponding to the exchange coupling phase,semi-coupled phase,and decoupled phase are found,depending on the size of inhomogeneities.In addition,the increase in the size of inhomogeneities leads to a transition of the coercivity mechanism from nucleation to pinning.This work could be useful for optimizing the magnetic properties of both exchange-coupled nanomagnets and inhomogeneous single-phase magnets. 展开更多
关键词 permanent magnets micromagnetic simulation EXCHANGE-COUPLING MULTILAYERS
原文传递
Synthesis of size-controlled and dispersible Sm_(2)Fe_(17)N_(3) magnetic particles by reduction diffusion process using molten salt
2
作者 Junhua Xi Zhi Yang +8 位作者 Muhammad Haseeb Yuanyuan Chen Xiaofeng Nie liying cong Qiong Wu Enfeng Fu Hongguo Zhang Weiqiang Liu Ming Yue 《Journal of Rare Earths》 SCIE EI CAS CSCD 2024年第11期2105-2111,I0004,共8页
The synthesis of size-controlled Sm_(2)Fe_(17) magnetic particles is a prerequisite for the fabrication of highperformance Sm_(2)Fe_(17)N_(3) permanent magnetic materials.Here,Sm_(2)Fe_(17) was synthesized using a cos... The synthesis of size-controlled Sm_(2)Fe_(17) magnetic particles is a prerequisite for the fabrication of highperformance Sm_(2)Fe_(17)N_(3) permanent magnetic materials.Here,Sm_(2)Fe_(17) was synthesized using a costeffective reduction-diffusion method.The calcium chloride molten salt was introduced to control the particle size and achieve a single phase of Sm_(2)Fe_(17).The effects of reduction-diffusion reaction temperature and the amount of added calcium chloride on the phase constitution and microstructure of the final product of reduction-diffusion were systematically investigated.Adding an appropriate amount of calcium chloride can effectively inhibit the overgrowth and sintering of the reduced particles.By employing the strategy of adding 20 wt% of calcium chlorides into the green compacts,we were able to successfully synthesize uniform Sm_(2)Fe_(17) particles that are well-dispersed,with an average size of 2.2 μm.Furthermore,by combining the optimal reduction-diffusion conditions and the nitriding process,the hard magnetic Sm_(2)Fe_(17)N_(3) material was successfully obtained.This study could be useful for the development of high-performance Sm_(2)Fe_(17)N_(3) magnetic materials utilizing reduction-diffusion technology. 展开更多
关键词 Sm_(2)Fe_(17)N_(3) Reduction-diffusion Rare earths Permanent magnets Molten salt
原文传递
Short-process recycling of Nd-Fe-B sintered magnet sludge wastes:Challenges and approaches 被引量:1
3
作者 liying cong Lichao Yu +2 位作者 Quangui Zhou Qingmei Lu Ming Yue 《Journal of Rare Earths》 SCIE EI CAS CSCD 2023年第10期1467-1477,I0001,共12页
Nd-Fe-B sintered magnet sludge wastes are one kind of typical commodity of recyclable rare-earth permanent magnet resources,and recycling such kind of wastes with economical and environmentally friendly techniques is ... Nd-Fe-B sintered magnet sludge wastes are one kind of typical commodity of recyclable rare-earth permanent magnet resources,and recycling such kind of wastes with economical and environmentally friendly techniques is crucial to the sustainable rare-earth industry.However,the current multistage wet process recycling technique for the sludge wastes involves high fabrication cost,excessive energy consumption,and heavy environmental burden.Therefore,short-process recycling techniques for Nd-Fe-B sintered magnet wastes have drawn increasing attention in the past decades.In this paper,we review recent efforts into short-process recycling Nd-Fe-B sintered magnet sludge wastes with emphasis on in-situ recycling techniques. 展开更多
关键词 Nd-Fe-B sintered Magnet sludge wastes Rare earths Short-process recycling In-situ recycling
原文传递
A facile process to optimize performance of regenerated Nd-Fe-B sintered magnets:Chemo-selective dissolution washing
4
作者 Haibo Xu Qingmei Lu +9 位作者 Lichao Yu liying cong Haowen Tian Weiqiang Liu Youhao Liu Yunqiao Wang Jingwu Chen Xiaofei Yi Qiong Wu Ming Yue 《Journal of Rare Earths》 SCIE EI CAS CSCD 2023年第12期1976-1983,I0006,共9页
In this work,the recycled Nd-Fe-B powders and regenerated Nd-Fe-B sintered magnets with low impurity content were successfully prepared from Nd-Fe-B magnet sludge via reduction diffusion(RD)method followed by a chemo-... In this work,the recycled Nd-Fe-B powders and regenerated Nd-Fe-B sintered magnets with low impurity content were successfully prepared from Nd-Fe-B magnet sludge via reduction diffusion(RD)method followed by a chemo-selective dissolution washing proc ess.The chemo-selective dissolution effect of various solution(deionized water,dilute acetic acid solution,NH_(4)Cl-methanol solution) was evaluated by impurity content and magnetic properties of the recycled Nd-Fe-B powder.The NH_(4)Cl-methanol solution can selectively remove impurities with minimal damage to the magnetic phase.Besides,the optimal NH_(4)Cl concentration and liquid-to-solid ratio were investigated.As a consequence,the contents of Ca,O,and H after optimal washing process are reduced to 0.07 wt%,0.31 wt% and 0.22 wt%,respectively.Hence,M_(3) Tis increased to 146.72 emu/g,which is 33% higher than that of the initial sludge.Then,the regenerated Nd-Fe-B sintered magnets with properties of B_(r)=11.66 kG,H_(cj)=16.49 kOe,and(BH)_(m)=31.78 MGOe were successfully prepared by mixing with 40 wt% Nd4Fe14B alloy powders.Compared with the corresponding regenerated magnets washed with deionized water,the remanence and coercivity are increased by 18% and 59%,respectively. 展开更多
关键词 Recycling Nd-Fe-B magnet Sludge Chemo-selective dissolution Washing process Magnetic properties Reduction diffusion Rare earths
原文传递
Calcium hydride reduced high-quality Nd-Fe-B powder from Nd-Fe-B sintered magnet sludge 被引量:2
5
作者 Haibo Xu Qingmei Lu +7 位作者 liying cong Haowen Tian Weiqiang Liu Youhao Liu Yunqiao Wang Jingwu chen Xiaofei Yi Ming Yue 《Journal of Rare Earths》 SCIE EI CAS CSCD 2022年第12期1905-1912,I0004,共9页
The structural and magnetic properties were studied for recycling Nd-Fe-B powders from Nd-Fe-B sintered magnets sludge via reduction diffusion(RD)with calcium hydride(CaH_(2))particles.For comparison,traditional reduc... The structural and magnetic properties were studied for recycling Nd-Fe-B powders from Nd-Fe-B sintered magnets sludge via reduction diffusion(RD)with calcium hydride(CaH_(2))particles.For comparison,traditional reducing agent calcium granules were applied to prepare recycled Nd-Fe-B powders.Finer particle size and better size distribution as well as lower impurity content are achieved by using CaH_(2)instead of Ca.In detail,the average particle size of the recycled Nd-Fe-B powder is reduced from 4.66 to 3.43μm,and the bimodal distribution disappears.Moreover,the residual calcium content and oxygen content are reduced to about 0.080 wt%and 0.32 wt%.As a consequence,the roomtemperature magnetization of the CaH_(2)-recycled Nd-Fe-B powder is increased to 146.30 emu/g,6.8%and 33%,respectively,higher than that of Ca-reduced powder and the initial sludge.Further analysis indicates that CaH_(2)is able to reduce the sludge at lower tempe rature to fabricate well-dispersed,unifo rm recycled powder with high magnetization arising from a combination factors of its low melting point,low thermodynamic behavior,and the release of hydrogen during the reaction. 展开更多
关键词 Recycled Nd-Fe-B powders Magnetic properties Microstructure Reducing agent Reduction diffusion Rare earths
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部