期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Gadd45基因表达调控对肿瘤发生的影响 被引量:1
1
作者 彭倩倩 李帅洪 +3 位作者 张文利 胡虎 朱龙飞 杨献光 《免疫学研究》 2015年第2期19-24,共6页
恶性肿瘤发生发展机制是生命科学研究的热点方向。研究发现,Gadd45蛋白是重要的致癌应激反应因子,肿瘤细胞的存活受Gadd45α、Gadd45β和Gadd45γ蛋白的调节。另外,Gadd45蛋白也参加由环境和生理损伤引起的细胞周期紊乱、DNA损伤修复、... 恶性肿瘤发生发展机制是生命科学研究的热点方向。研究发现,Gadd45蛋白是重要的致癌应激反应因子,肿瘤细胞的存活受Gadd45α、Gadd45β和Gadd45γ蛋白的调节。另外,Gadd45蛋白也参加由环境和生理损伤引起的细胞周期紊乱、DNA损伤修复、细胞凋亡过程,同时在细胞发育过程中也起重要的作用。本文综述了Gadd45基因表达调控对肿瘤发生的影响。 展开更多
关键词 Gadd45基因 肿瘤发生 细胞凋亡 细胞周期
下载PDF
Effectively refining Al-10Si alloy via Al-Ti-Nb-B refiner with Nb_(2)O_(5) 被引量:1
2
作者 longfei zhu Yu Zhang +2 位作者 Qun Luo Liming Peng Qian Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第9期204-210,共7页
Al-Si alloys have excellent corrosion resistance,low thermal expansion coefficient,and high strength-to-weight ratio,which make them widely used in structural components in the automotive and aerospace industries[1,2]... Al-Si alloys have excellent corrosion resistance,low thermal expansion coefficient,and high strength-to-weight ratio,which make them widely used in structural components in the automotive and aerospace industries[1,2].However,the coarseα-Al dendrites result in poor mechanical properties[3,4],and the widely used Al-5Ti-B(all compositions are in wt.%unless otherwise specified)refiner fails in as-cast aluminum alloys with high silicon content(≥5 wt.%)due to the Si-poisoning effect[5,6].Fortunately,in order to overcome Si-poisoning,a series of refiners have been developed.Al-B refiner is effective for refining aluminum alloys with high silicon content,but it is easy to be poisoned by Ti/Zr[7,8].Al-Nb-B[9–11]and Al-V-B[12]refiners have a certain ability to overcome Si-poisoning,while the nucleating particles have a large density and are easy to agglomerate and settle,leading to the grain refinement fading phenomenon.Al-Ti-C-B refiner realizes the anti-Si/Zrpoisoning ofα-Al grain refinement based on the evolving effect of a doped TCB complex[13,14].Al-Ti-Nb-B refiner prepared with Nb partially substituted Ti can improve the refinement level of Al-10Si alloy to 109–125μm[15,16].However,the existing preparation method of the refiner uses pure Nb powder as raw material,resulting in high preparation costs,which limits its application in industry to a certain extent. 展开更多
关键词 ALLOY CORROSION REFINEMENT
原文传递
Prediction of ultimate tensile strength of Al-Si alloys based on multimodal fusion learning
3
作者 longfei zhu Qun Luo +5 位作者 Qiaochuan Chen Yu Zhang Lijun Zhang Bin Hu Yuexing Han Qian Li 《Materials Genome Engineering Advances》 2024年第1期104-119,共16页
Exploring the“composition-microstructure-property”relationship is a long-standing theme in materials science.However,complex interactions make this area of research challenging.Based on the image processing and mach... Exploring the“composition-microstructure-property”relationship is a long-standing theme in materials science.However,complex interactions make this area of research challenging.Based on the image processing and machine learning techniques,this paper proposes a multimodal fusion learning framework that comprehensively considers both composition and microstructure in prediction of the ultimate tensile strength(UTS)of Al-Si alloys.Firstly,the composition and image information are collected from the literature and supplementary experi-ments,followed by the image segmentation and quantitative analysis of eutectic Si images.Subsequently,the quantitative analysis results are combined with other features for three-step feature screening,and 12 key features are obtained.Finally,four machine-learning models(i.e.,decision tree,random forest,adaptive boosting,and extreme gradient boosting[XGBoost])are used to predict the UTS of Al-Si alloys.The results show that the quantitative analysis method proposed in this paper is superior to Image-Pro Plus(IPP)software in some aspects.The XGBoost model has the best prediction performance with R^(2)=0.94.Furthermore,five mixed features and their critical values that significantly affect UTS are identified.Our study provides enlightenment for the prediction of UTS of Al-Si alloys from composition and microstructure,and would be applicable to other alloys. 展开更多
关键词 Al-Si alloys image processing machine learning multimodal property prediction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部