The exploration of novel photo/thermal-responsive nonvolatile memorizers will be beneficial for energysaving memories.Herein,new<110>-oriented perovskites using single template melamine,i.e.,[(MLAI-H_(2))(PbX_(4...The exploration of novel photo/thermal-responsive nonvolatile memorizers will be beneficial for energysaving memories.Herein,new<110>-oriented perovskites using single template melamine,i.e.,[(MLAI-H_(2))(PbX_(4))]_n(X=Br (α-1),Cl (α-2),MLAI=melamine) have been prepared and their structures upon irradiation of visible light have been investigated.They have been fabricated as nonvolatile memory devices with structures of ITO/[(MLAI-H_(2))(PbX_(4))]_n/PMMA/Ag (device-1:X=Br,device-2:X=Cl),which can exhibit unique visible light-triggered binary nonvolatile memory performances.Interestingly,the silent or working status can be monitored by visible chromisms.Furthermore,the light-triggered binary resistive switching mechanisms of these ITO/[(MLAI-H_(2))(PbX_(4))]_n/PMMA/Ag memory devices have been clarified in terms of EPR,fluorescence,and single-crystal structural analysis.The presence of light-activated traps in<110>-oriented[(MLAI-H_(2))(PbX_(4))]_n perovskites are dominated in the appearance of light-triggered resistive switching behaviors,based on which the inverted internal electrical fields can be established.According to the structural analysis,the more distorted PbX_6octahedra,higher corrugated<110>-oriented perovskite sheets,and more condensed organic-inorganic packing in Br-containing perovskite are beneficial for the stabilization of light-activated traps,which lead to the better resistive switching behavior of device-1.This work can pave a new avenue for the establishment of novel energy-saving nonvolatile memorizers used in aerospace or military industries.展开更多
基金financially supported by the Natural Science Foundation of Fujian Province(Nos.2021J02007,2021J01553)Fujian Science&Technology Innovation Laboratory for Optoelectronic Information of China(No.2021ZR148)。
文摘The exploration of novel photo/thermal-responsive nonvolatile memorizers will be beneficial for energysaving memories.Herein,new<110>-oriented perovskites using single template melamine,i.e.,[(MLAI-H_(2))(PbX_(4))]_n(X=Br (α-1),Cl (α-2),MLAI=melamine) have been prepared and their structures upon irradiation of visible light have been investigated.They have been fabricated as nonvolatile memory devices with structures of ITO/[(MLAI-H_(2))(PbX_(4))]_n/PMMA/Ag (device-1:X=Br,device-2:X=Cl),which can exhibit unique visible light-triggered binary nonvolatile memory performances.Interestingly,the silent or working status can be monitored by visible chromisms.Furthermore,the light-triggered binary resistive switching mechanisms of these ITO/[(MLAI-H_(2))(PbX_(4))]_n/PMMA/Ag memory devices have been clarified in terms of EPR,fluorescence,and single-crystal structural analysis.The presence of light-activated traps in<110>-oriented[(MLAI-H_(2))(PbX_(4))]_n perovskites are dominated in the appearance of light-triggered resistive switching behaviors,based on which the inverted internal electrical fields can be established.According to the structural analysis,the more distorted PbX_6octahedra,higher corrugated<110>-oriented perovskite sheets,and more condensed organic-inorganic packing in Br-containing perovskite are beneficial for the stabilization of light-activated traps,which lead to the better resistive switching behavior of device-1.This work can pave a new avenue for the establishment of novel energy-saving nonvolatile memorizers used in aerospace or military industries.