Lignin is the most abundant naturally phenolic biomass,and the synthesis of high-performance renewable fuel from lignin has attracted significant attention.We propose the efficient synthesis of high-density fuels usin...Lignin is the most abundant naturally phenolic biomass,and the synthesis of high-performance renewable fuel from lignin has attracted significant attention.We propose the efficient synthesis of high-density fuels using simulated lignin cracked oil in tandem with hydroalkylation and deoxygenation reactions.First,we investigated the reaction pathway for the hydroalkylation of phenol,which competes with the hydrodeoxygenation form cyclohexane.And then,we investigated the effects of metal catalyst types,the loading amount of metallic,acid dosage,and reactant ratio on the reaction results.The phenol hydroalkylation and hydrodeoxygenation were balanced when 180℃ and 5 MPa H_(2)with the alkanes yield of 95%.By extending the substrate to other lignin-derived phenolics and simulated lignin cracked oil,we obtained the polycyclic alkane fuel with high density of 0.918 g·ml^(-1)and calorific value of41.2 MJ·L^(-1).Besides,the fuel has good low-temperature properties(viscosity of 9.3 mm^(2)·s^(-1)at 20℃ and freezing point below-55℃),which is expected to be used as jet fuel.This work provides a promising way for the easy and green production of high-density fuel directly from real lignin oil.展开更多
Understanding the relationship between the chemical composition and pyrolysis performance of endothermic hydrocarbon fuel(EHF) is of great significance for the design and optimization of advanced EHFs. In this work, t...Understanding the relationship between the chemical composition and pyrolysis performance of endothermic hydrocarbon fuel(EHF) is of great significance for the design and optimization of advanced EHFs. In this work, the effect of deep hydrogenation on the pyrolysis of commercial RP-3 is investigated.Fuels with different hydrogenation degrees were obtained by the partially and completely catalytic hydrogenation and their pyrolysis performances were investigated using an apparatus equipped with an electrically heated tubular reactor. The results show that with the increase of hydrogenation degree, fuel conversion almost remains constant during the pyrolysis process(500-650°C, 4 MPa);however, the heat sink increases slightly, and the anti-coking performance significantly improves, which are highly related to their H/C ratios. Detailed characterisations reveal that the difference of the pyrolysis performance can be ascribed to the content of aromatics and cycloalkanes: the former are prone to initiate secondary reactions to form coking precursors, while the latter could act as the hydrogen donor and release hydrogen, which will terminate the radical propagation reactions and suppress the coke deposition. This work should provide the guidance for upgrading EHFs by modulating the composition of EHFs.展开更多
High-energy-density fuels are important for volume-limited aerospace vehicles,but the increase in fuel energy density always leads to poor cryogenic performance.Herein,we investigated the transposed Paternò-B...High-energy-density fuels are important for volume-limited aerospace vehicles,but the increase in fuel energy density always leads to poor cryogenic performance.Herein,we investigated the transposed Paternò-Büchi reaction of biomass cyclic ketone and cyclic alkene to synthesize a new kind of alkyl-substituted polycyclic hydrocarbon fuel with high energy density and good cryogenic performance.The triplet-energy-quenching results and phosphorescent emission spectra reveal the sensitization mechanism of the reaction,including photosensitizer excitation,triplettriplet energy transfer,cyclization,and relaxation,and the possible reaction path was revealed by the density functional theory(DFT)calculations.The reaction conditions of photosensitizer type and addition,molar ratio of substrates,reaction temperature,and incident light intensity were optimized,with the target product yield achieving 65.5%.Moreover,the reaction dynamics of the reaction rate versus the light intensity are established.After the hydrogenation-deoxygenation reaction,three fuels with a high density of 0.864-0.938 g·ml^(-1) and a low freezing point of<-55℃ are obtained.This work provides a benign and effective approach to synthesize high-performance fuels.展开更多
Energetic nanofluid fuel has caught the attention of the field of aerospace liquid propellant for its high energy density(HED), but it suffers from the inevitable solid-liquid phase separation problem. To resolve this...Energetic nanofluid fuel has caught the attention of the field of aerospace liquid propellant for its high energy density(HED), but it suffers from the inevitable solid-liquid phase separation problem. To resolve this problem, herein we synthesized the high-Al-/B-containing(up to 30%(mass)) HED gelled fuels, with low-molecular-mass organic gellant Z, which show high net heat of combustion(NHOC), density, storage stability, and thixotropic properties. The characterizations indicate that the application of energetic particles to the gelled fuels obviously destroys their fibrous network structures but can provide the new particle-gellant gelation microstructures, resulting in the comparable stability between 1.0%(mass) Z/JP-10 + 30%(mass) Al or B and pure JP-10 gelled fuel. Moreover, the gelled fuels with high-content Al or B exhibit high shear-thinning property, recovery capability, and mechanical strength, which are favorable for their storage and utilization. Importantly, the prepared 1.0%(mass) Z/JP-10 + 30%(mass) B(or 1.0%(mass) Z/JP-10 + 30%(mass) Al) shows the density and NHOC 1.27 times(1.30) and 1.43 times(1.21)higher than pure JP-10, respectively. This work provides a facile and valid approach to the manufacturing of HED gelled fuels with high content of energetic particles for gel propellants.展开更多
Charge separation is critical for achieving efficient solar-to-hydrogen conversion,whereas piezoelectric-enhanced photoelectrochemical(PEC)systems can effectively modulate band bending and charge migration.Herein,we d...Charge separation is critical for achieving efficient solar-to-hydrogen conversion,whereas piezoelectric-enhanced photoelectrochemical(PEC)systems can effectively modulate band bending and charge migration.Herein,we design an n-TiO_(2)/Ba TiO_(3)/p-TiO_(2)(TBTm)heterojunction in which the piezoelectric Ba TiO_(3) layer is sandwiched between n-TiO_(2)and p-TiO_(2).The built-in electric field of TBTm can provide a strong driving force to accelerate carrier separation and prolong carrier lifetime.Consequently,the TBT3 achieves a prominent photocurrent density,as high as 2.13 m A cm^(-2)at 1.23 V versus reversible hydrogen electrode(RHE),which is 2.4-and 1.5-times higher than TiO_(2) and TiO_(2)–Ba TiO_(3) heterojunction,respectively.Driven by mechanical deformation,the induced dipole polarization can further regulate built-in electric fields,and the piezoelectric photocurrent density of TBT3-800 is 2.84 times higher than TiO_(2) at 1.23 V vs.RHE due to the construction of piezoelectric-heterostructures.This work provides a piezoelectric polarization strategy for modulating the built-in electric field of heterojunction for PEC system.展开更多
Synthesizing high-density fuel from lignocellulose can not only achieve green and low-carbon development,but also expand the feedstock source of hydrocarbon fuel.Here,we reported a route of producing high-density fuel...Synthesizing high-density fuel from lignocellulose can not only achieve green and low-carbon development,but also expand the feedstock source of hydrocarbon fuel.Here,we reported a route of producing high-density fuel from lignin oil and hemicellulose derivative cyclopentanol through alkylation and hydrodeoxygenation,HY with SiO_(2)/Al_(2)O_(3) molar ratio of 5.3 was screened as the alkylation catalyst in the reaction of model phenolic compounds and mixtures,and the reaction conditions were optimized to achieve conversion of phenolic compounds higher than 87%and selectivity of bicyclic and tricyclic products higher than 99%.Then two phenolic pools simulating the composition of two typic lignin oils were studied to validate the alkylation and analyze the competition mechanism of phenolic compounds in mixture system.Finally,real lignin oil from depolymerized of beech powder was tested,and notably80%of phenolic monomers in the oil were converted into fuel precursor.After hydrodeoxygenation,the alkylated product was converted to fuel blend with a density of 0.91 g/mL at 20℃and a freezing point lower than-60℃,very promising as high density fuel.This work provides a facile and energyefficient way of synthesizing high-performance jet fuel directly from lignocellulosic derivatives,which decreases processing energy consumption and improve the utilization rate of feedstock.展开更多
Sluggish reaction kinetics of oxygen evolution reaction(OER), resulting from multistep proton-coupled electron transfer and spin constriction, limits overall efficiency for most reported catalysts. Herein, using model...Sluggish reaction kinetics of oxygen evolution reaction(OER), resulting from multistep proton-coupled electron transfer and spin constriction, limits overall efficiency for most reported catalysts. Herein, using modeled ZnFe_(2-x)Ni_xO_(4)(0 ≤ x ≤ 0.4) spinel oxides, we aim to develop better OER electrocatalyst through combining the construction of ferromagnetic(FM) ordering channels and generation of highly active reconstructed species. The number of symmetry-breaking Fe–O–Ni structure links to the formation of FM ordering electron transfer channels. Meanwhile, as the number of Ni^(3+)increases, more ligand holes are formed, beneficial for redirecting surface reconstruction. The electro-activated ZnFe_(1.6)Ni_(0.4)O_(4) shows the highest specific activity, which is 13 and 2.5 times higher than that of ZnFe_(2)O_(4) and unactivated ZnFe_(1.6)Ni_(0.4)O_(4), and even superior to the benchmark IrO_(2) under the overpotential of 350 mV. Applying external magnetic field can make electron spin more aligned, and the activity can be further improved to 39 times of ZnFe_(2)O_(4). We propose that intriguing FM exchange-field interaction at FM/paramagnetic interfaces can penetrate FM ordering channels into reconstructed oxyhydroxide layers, thereby activating oxyhydroxide layers as spin-filter to accelerate spin-selective electron transfer. This work provides a new guideline to develop highly efficient spintronic catalysts for water oxidation and other spin-forbidden reactions.展开更多
Water can be used as oxidant in conjunction with metal particles to form metal-water propellant to increase the energy of propellant.For this application,water needs to be stored in form of solid and capable of becomi...Water can be used as oxidant in conjunction with metal particles to form metal-water propellant to increase the energy of propellant.For this application,water needs to be stored in form of solid and capable of becoming liquid when use.Stable and thixotropic hydrogel has good potential as water-retaining material and oxidant of metal-based propellant.In this study,we prepared organic/inorganic composite hydrogels by combining inorganic gellants hectorite and fumed silica with organic gellant agarose,respectively.The total content of the gellants can be reduced to less than 2%by adding agarose.The influence of agarose on water content,phase transition temperature,centrifugal stability and other basic physical properties of composite hydrogels were discussed.The results show that the composite hydrogels have better thixotropy and stability than pure inorganic hydrogels,and the gel-sol transformation can be realized by applying shear force or heating to the phase transition temperature.The composite hydrogels have good shear thinning ability and improved mechanical stability.Fumed silica/agarose hydrogels have better physical stability,while the thixotropy and shear thinning ability of hectorite/agarose hydrogels are better.展开更多
The Haber-Bosch process for industrial NH_(3) production is energy-intensive with heavy CO_(2) emissions.Electrochemical N_(2) reduction reaction(NRR)is an attractive carbon-neutral alternative for NH_(3) synthesis,wh...The Haber-Bosch process for industrial NH_(3) production is energy-intensive with heavy CO_(2) emissions.Electrochemical N_(2) reduction reaction(NRR)is an attractive carbon-neutral alternative for NH_(3) synthesis,while the challenge associated with N_(2) activation highlights the demand for efficient electrocatalysts.Herein,we demonstrate that PdCu nanoparticles with different Pd/Cu ratios anchored on boron nanosheet(PdCu/B)behave as efficient NRR electrocatalysts toward NH_(3) synthesis.Theoretical and experimental results confirm that the highly efficient NH_(3) synthesis can be achieved by regulating the charge transfer between interfaces and forming a symmetry-breaking site,which not only alleviates the hydrogen evolution but also changes the adsorption configuration of N_(2) and thus optimizes the reaction pathway of NRR over the separated Pd sites.Compared with monometallic Pd/B and Cu/B,the PdCu/B with the optimized Pd/Cu ratio of 1 exhibits superior activity and selectivity for NH_(3) synthesis.This study provides new insight into developing efficient catalysts for small energy molecule catalytic conversion via regulating the charge transfer between interfaces and constructing symmetry-breaking sites.展开更多
Water electrolysis,a process for producing green hydrogen from renewable energy,plays a crucial role in the transition toward a sustainable energy landscape and the realization of the hydrogen economy.Oxygen evolution...Water electrolysis,a process for producing green hydrogen from renewable energy,plays a crucial role in the transition toward a sustainable energy landscape and the realization of the hydrogen economy.Oxygen evolution reaction(OER)is a critical step in water electrolysis and is often limited by its slow kinetics.Two main mechanisms,namely the adsorbate evolution mechanism(AEM)and lattice oxygen oxidation mechanism(LOM),are commonly considered in the context of OER.However,designing efficient catalysts based on either the AEM or the LOM remains a topic of debate,and there is no consensus on whether activity and stability are directly related to a certain mechanism.Considering the above,we discuss the characteristics,advantages,and disadvantages of AEM and LOM.Additionally,we provide insights on leveraging the LOM to develop highly active and stable OER catalysts in future.For instance,it is essential to accurately differentiate between reversible and irreversible lattice oxygen redox reactions to elucidate the LOM.Furthermore,we discuss strategies for effectively activating lattice oxygen to achieve controllable steady-state exchange between lattice oxygen and an electrolyte(OH^(-)or H_(2)O).Additionally,we discuss the use of in situ characterization techniques and theoretical calculations as promising avenues for further elucidating the LOM.展开更多
Antioxidants addition is believed as a facile and effective way to improve jet fuel thermal oxidation stability.However,amine antioxidants,as one of the most important antioxidants,have not received sufficient attenti...Antioxidants addition is believed as a facile and effective way to improve jet fuel thermal oxidation stability.However,amine antioxidants,as one of the most important antioxidants,have not received sufficient attention in the field of jet fuel autoxidation yet.Herein,the inhibition efficiency and mechanism of decane and exo-tetrahydrodicyclopentadiene(THDCPD)oxidation by di-4-tert-butylphenylamine(diarylamine)was experimentally and theoretically investigated.The results show that diarylamine can significantly inhibit decane oxidation but is less efficient for THDCPD oxidation,which is attributed to the higher energy barrier of retro-carbonyl-ene reaction(rate-determining step)in THDCPD than that in decane during diarylamine regeneration.However,the addition of diarylamine will cause undesirable color change after accelerated oxidation and produce slightly more deposits during high-temperature thermal oxidative stress for both decane and THDCPD.The results provide significant implications for the future design of effective antioxidant additives for high-performance jet fuel.展开更多
Metal oxyhydroxides(MOOH)generated from irreversible reconstructions of transition metal compounds are intrinsic active species for oxygen evolution reaction,whose activities are still constrained by sluggish deproton...Metal oxyhydroxides(MOOH)generated from irreversible reconstructions of transition metal compounds are intrinsic active species for oxygen evolution reaction,whose activities are still constrained by sluggish deprotonation kinetics and inherent adsorption energy scaling relations.Herein,we construct a tunable proton acceptor(TPA)on oxyhydroxides by in-situ reconstruction of metal oxoacids such as NiC2O4to accelerate deprotonation and break adsorption energy scaling relations during OER.The modified C_(2)O_(4)^(2-)as a TPA can easily extract H of*OH(forming*HC2O4intermediate)and then promote deprotonation by the transmitted hydrogen bond with*OOH along conjugated(H...)O=C-O(-H)chain.As a result,Ni OOH-C2O4shows non-concerted proton-electron transfer and improved deprotonation rate,and delivers a good OER activity(270 mV@10 mA cm-2).The conjugate acidity coefficient(pKa)of the modified oxoacid group can be a descriptor for TPA selection.This TPA strategy can be universally applied to Co-,Fe-,and Ni-based oxyhydroxides to facilitate OER efficiency.展开更多
The development of advanced air transportation has raised new demands for high-performance liquid hydrocarbon fuels.However,the measurement of fuel properties is time-consuming,cost-intensive,and limited to the operat...The development of advanced air transportation has raised new demands for high-performance liquid hydrocarbon fuels.However,the measurement of fuel properties is time-consuming,cost-intensive,and limited to the operating conditions.The physicochemical properties of aerospace fuels are directly infl uenced by chemical composition.Thus,a thorough investigation should be conducted on the inherent relationship between fuel properties and composition for the design and synthesis of high-grade fuels and the prediction of fuel properties in the future.This work summarized the eff ects of fuel composition and hydrocarbon molecular structure on the fuel physicochemical properties,including density,net heat of combustion(NHOC),low-temperature fl uidity(viscosity and freezing point),fl ash point,and thermal-oxidative stability.Several correlations and predictions of fuel properties from chemical composition were reviewed.Additionally,we correlated the fuel properties with hydrogen/carbon molar ratios(n H/C)and molecular weight(M).The results from the least-square method implicate that the coupling of H/C molar ratio and M is suitable for the estimation of density,NHOC,viscosity and eff ectiveness for the design,manufacture,and evaluation of aviation hydrocarbon fuels.展开更多
Adsorption and photodegradation are promising approaches for removing organic pollutions.In this study,we combined these two processes by co-loading Fe-TiO2 and Fe2O3 quantum dots(QDs)on porous MCM-41,using a simple h...Adsorption and photodegradation are promising approaches for removing organic pollutions.In this study,we combined these two processes by co-loading Fe-TiO2 and Fe2O3 quantum dots(QDs)on porous MCM-41,using a simple hydrolysis method.X-ray diffraction,high-resolution transmission electron microscopy,and X-ray photoelectron spectroscopy results indicated that Fe-TiO2 QDs are formed at low Fe precursor concentrations,while additional Fe2O3 QDs are formed at higher Fe precursor concentrations.The Fe2O3 and Fe-TiO2 QDs impart high adsorption capacity and high photoactivity to the porous MCM-41,respectively.Thus,their combination results in a synergic effect of the adsorption and photodegradation.The highest-performing sample exhibits excellent performance in removing rose bengal from aqueous solution.展开更多
Noble-metal-free hydrogen/oxygen evolution reaction(HER/OER) electrocatalysts, especially bifunctional electrocatalysts, are essential for overall water splitting, but their performance is impeded by many factors like...Noble-metal-free hydrogen/oxygen evolution reaction(HER/OER) electrocatalysts, especially bifunctional electrocatalysts, are essential for overall water splitting, but their performance is impeded by many factors like poor electrical conductivity. Herein, we fabricated cobalt phosphide(Co P) nanoparticles embedded in P and N co-doped carbon(PNC) matrix(Co P@PNC) to fully realize the high activity of Co P by maximizing its conductivity. Simply a carbonization coupled phosphidation approach was utilized where Co ions and organic ligands of Co-MOF were transferred into Co P and P and N co-doped carbon. The synthesized material shows an ideal electrical conductivity, excellent HER(overpotential of-84 m V and-120 m V @10 m A cmin acidic and alkaline medias, respectively) and OER(overpotential of 330 m V@10 m A cmin alkaline media) performances. Further, Co P@PNC acts as a superior catalyst for both anode and cathode to catalyze overall water splitting and only requires an voltage of 1.52 V to deliver a current density of 10 m A cm, superior to the noble-metal catalysts system(Pt/C//IrO) and the reported noble-metal-free bifunctional electrocatalysts.展开更多
Gelled fuels are the very promising propellants for new-generation rocket and ramjet propulsion.Here we report a new type of low-molecular mass organic gellant(Z),and prepared four kinds of stable gelled fuels based o...Gelled fuels are the very promising propellants for new-generation rocket and ramjet propulsion.Here we report a new type of low-molecular mass organic gellant(Z),and prepared four kinds of stable gelled fuels based on HD-01,HD-03,RP-3 and QC liquid fuels,with the critical gellant concentration less than 1%(mass).The characterizations show that the gellant can form 3D network structure,via hydrogen bonding,π-πstacking and van der Waals forces,to fix fuel molecules during the formation of gelled fuels.So,the gelled fuels show high stability,with the remaining gel mass of 0.25%(mass)Z/HD-01 more than 90%even at high centrifugal speed of 7500 r·min^(-1),but the rheological property test shows that all gelled fuels have obvious shear thinning property,which benefits its storage in gelled state while supply in liquid state.The gelation of liquid fuels by gellant Z can increase the volumetric net heat of combustion(for HD-01,it increases from 39.58 MJ·L^(-1) to 40.76 MJ·L^(-1) with 1%(mass)Z),and liquefied gelled fuels show the comparable ignition delay time with the pristine liquid fuels.So,the gelled fuels made by gellant Z have better stability,shear thinning and combustion performances,which have great potential for the practical application.展开更多
Aerospace aircraft has significantly improved the life quality of human beings and extended the capability of space explosion since its appearance in 1903,in which liquid propellants or fuels provide the key power sou...Aerospace aircraft has significantly improved the life quality of human beings and extended the capability of space explosion since its appearance in 1903,in which liquid propellants or fuels provide the key power source.For jet fuels,its property of energy density plays an important role in determining the flight range,load,and performance of the aircraft.Therefore,the design and fabrication of high-energy-density(HED)fuels attract more and more attention from researchers all over the world.Herein,we briefly introduce the development of liquid jet fuels and HED fuels and demonstrate the future development of HED fuels.To further improve the energy density of fuel,the approaches of design and construction of multi-cyclic and stained molecule structures are proposed.To break through the density limit of hydrocarbon fuels,the addition of energetic nanoparticles in HED fuels to produce nanofluid or gelled fuels may provide a facile and effective method to significantly increase the energy density.This work provides the perspective for the development of HED fuels for advanced aircrafts.展开更多
Developing effective and practical electrocatalyst under industrial electrolysis conditions is critical for renewable hydrogen production.Herein,we report the self-supporting NiFe LDH-MoS_(x) integrated electrode for ...Developing effective and practical electrocatalyst under industrial electrolysis conditions is critical for renewable hydrogen production.Herein,we report the self-supporting NiFe LDH-MoS_(x) integrated electrode for water oxidation under normal alkaline test condition(1 M KOH at 25℃)and simulated industrial electrolysis conditions(5 M KOH at 65℃).Such optimized electrode exhibits excellent oxygen evolution reaction(OER)performance with overpotential of 195 and 290 mV at current density of 100 and 400 mA·cm^(-2) under normal alkaline test condition.Notably,only over-potential of 156 and 201 mV were required to achieve the current density of 100 and 400mA·cm^(-2) under simulated industrial electrolysis conditions.No significant degradations were observed after long-term durability tests for both conditions.When using in two-electrode system,the operational voltages of 1.44 and 1.72 V were required to achieve a current density of 10 and 100 mA·cm^(-2) for the overall water splitting test(NiFe LDH-MoS_(x)/INF||20%Pt/C).Additionally,the operational voltage of employing NiFe LDH-MoS_(x)/INF as both cathode and anode merely require 1.52 V at 50mA·cm^(-2) at simulated industrial electrolysis conditions.Notably,a membrane electrode assembly(MEA)for anion exchange membrane water electrolysis(AEMWEs)using NiFe LDH-MoS_(x)/INF as an anode catalyst exhibited an energy conversion efficiency of 71.8%at current density of 400 mA·cm^(-2)in 1 M KOH at 60℃.Further experimental results reveal that sulfurized substrate not only improved the conductivity of NiFe LDH,but also regulated its electronic configurations and atomic composition,leading to the excellent activity.The easy-obtained and cost-effective integrated electrodes are expected to meet the large-scale application of industrial water electrolysis.展开更多
High-energy-density liquid hydrocarbon fuels are generally synthesized using various chemical reactions to improve the performance(e.g.,range,load,speed)of aerospace vehicles.Compared with conventional fuels,such as a...High-energy-density liquid hydrocarbon fuels are generally synthesized using various chemical reactions to improve the performance(e.g.,range,load,speed)of aerospace vehicles.Compared with conventional fuels,such as aviation kerosene and rocket kerosene,these liquid hydrocarbon fuels possess the advantages of high-energy-density and high volumetric calorifi c value;therefore,the fuels have important application value.The photocatalytic process has shown great potential for the synthesis of a diverse range of fuels on account of its unique properties,which include good effi ciency,clean atomic economy,and low energy consumption.These characteristics have led to the emergence of the photocatalytic process as a promising complement and alternative to traditional thermocatalytic reactions for fuel synthesis.Extensive eff ort has been made toward the construction of catalysts for the multiple photocatalytic syntheses of high-energy-density fuels.In this review,we aim to summarize the research progress on the photocatalytic synthesis of high-energy-density fuel by using homogeneous and heterogeneous catalytic reactions.Specifi cally,the synthesis routes,catalysts,mechanistic features,and future challenges for the photocatalytic synthesis of high-energy-density fuel are described in detail.The highlights of this review not only promote the development of the photocatalytic synthesis of high-energy-density fuel but also expand the applications of photocatalysis to other fi elds.展开更多
基金the support from National Key Research and Development Program of China(2021YFC2104400)the Tianjin Science and Technology Plan Project(21JCQNJC00340)the Haihe Laboratory of Sustainable Chemical Transformations for financial support。
文摘Lignin is the most abundant naturally phenolic biomass,and the synthesis of high-performance renewable fuel from lignin has attracted significant attention.We propose the efficient synthesis of high-density fuels using simulated lignin cracked oil in tandem with hydroalkylation and deoxygenation reactions.First,we investigated the reaction pathway for the hydroalkylation of phenol,which competes with the hydrodeoxygenation form cyclohexane.And then,we investigated the effects of metal catalyst types,the loading amount of metallic,acid dosage,and reactant ratio on the reaction results.The phenol hydroalkylation and hydrodeoxygenation were balanced when 180℃ and 5 MPa H_(2)with the alkanes yield of 95%.By extending the substrate to other lignin-derived phenolics and simulated lignin cracked oil,we obtained the polycyclic alkane fuel with high density of 0.918 g·ml^(-1)and calorific value of41.2 MJ·L^(-1).Besides,the fuel has good low-temperature properties(viscosity of 9.3 mm^(2)·s^(-1)at 20℃ and freezing point below-55℃),which is expected to be used as jet fuel.This work provides a promising way for the easy and green production of high-density fuel directly from real lignin oil.
基金support from National Key Research and Development Program of China(2021YFC2103701)the National Postdoctoral Program of China(GZB20230630)the National Natural Science Foundation of China(22208295).
文摘Understanding the relationship between the chemical composition and pyrolysis performance of endothermic hydrocarbon fuel(EHF) is of great significance for the design and optimization of advanced EHFs. In this work, the effect of deep hydrogenation on the pyrolysis of commercial RP-3 is investigated.Fuels with different hydrogenation degrees were obtained by the partially and completely catalytic hydrogenation and their pyrolysis performances were investigated using an apparatus equipped with an electrically heated tubular reactor. The results show that with the increase of hydrogenation degree, fuel conversion almost remains constant during the pyrolysis process(500-650°C, 4 MPa);however, the heat sink increases slightly, and the anti-coking performance significantly improves, which are highly related to their H/C ratios. Detailed characterisations reveal that the difference of the pyrolysis performance can be ascribed to the content of aromatics and cycloalkanes: the former are prone to initiate secondary reactions to form coking precursors, while the latter could act as the hydrogen donor and release hydrogen, which will terminate the radical propagation reactions and suppress the coke deposition. This work should provide the guidance for upgrading EHFs by modulating the composition of EHFs.
基金support from National Key Research and Development Program of China(2021YFC2103704)the National Natural Science Foundation of China(22222808,21978200)the Haihe Laboratory of Sustainable Chemical Transformations.
文摘High-energy-density fuels are important for volume-limited aerospace vehicles,but the increase in fuel energy density always leads to poor cryogenic performance.Herein,we investigated the transposed Paternò-Büchi reaction of biomass cyclic ketone and cyclic alkene to synthesize a new kind of alkyl-substituted polycyclic hydrocarbon fuel with high energy density and good cryogenic performance.The triplet-energy-quenching results and phosphorescent emission spectra reveal the sensitization mechanism of the reaction,including photosensitizer excitation,triplettriplet energy transfer,cyclization,and relaxation,and the possible reaction path was revealed by the density functional theory(DFT)calculations.The reaction conditions of photosensitizer type and addition,molar ratio of substrates,reaction temperature,and incident light intensity were optimized,with the target product yield achieving 65.5%.Moreover,the reaction dynamics of the reaction rate versus the light intensity are established.After the hydrogenation-deoxygenation reaction,three fuels with a high density of 0.864-0.938 g·ml^(-1) and a low freezing point of<-55℃ are obtained.This work provides a benign and effective approach to synthesize high-performance fuels.
基金support from the National Natural Science Foundation of China (22222808, 21978200)the Haihe Laboratory of Sustainable Chemical Transformations for financial support
文摘Energetic nanofluid fuel has caught the attention of the field of aerospace liquid propellant for its high energy density(HED), but it suffers from the inevitable solid-liquid phase separation problem. To resolve this problem, herein we synthesized the high-Al-/B-containing(up to 30%(mass)) HED gelled fuels, with low-molecular-mass organic gellant Z, which show high net heat of combustion(NHOC), density, storage stability, and thixotropic properties. The characterizations indicate that the application of energetic particles to the gelled fuels obviously destroys their fibrous network structures but can provide the new particle-gellant gelation microstructures, resulting in the comparable stability between 1.0%(mass) Z/JP-10 + 30%(mass) Al or B and pure JP-10 gelled fuel. Moreover, the gelled fuels with high-content Al or B exhibit high shear-thinning property, recovery capability, and mechanical strength, which are favorable for their storage and utilization. Importantly, the prepared 1.0%(mass) Z/JP-10 + 30%(mass) B(or 1.0%(mass) Z/JP-10 + 30%(mass) Al) shows the density and NHOC 1.27 times(1.30) and 1.43 times(1.21)higher than pure JP-10, respectively. This work provides a facile and valid approach to the manufacturing of HED gelled fuels with high content of energetic particles for gel propellants.
基金the support from the National Natural Science Foundation of China(22222808,21978200,22161142002)the Joint Research Programs of National Natural Science Foundation of China and Pakistan Science Foundation(PSF-NSFC-IV/Phy/P-PU(31))the Haihe Laboratory of Sustainable Chemical Transformations for financial support。
文摘Charge separation is critical for achieving efficient solar-to-hydrogen conversion,whereas piezoelectric-enhanced photoelectrochemical(PEC)systems can effectively modulate band bending and charge migration.Herein,we design an n-TiO_(2)/Ba TiO_(3)/p-TiO_(2)(TBTm)heterojunction in which the piezoelectric Ba TiO_(3) layer is sandwiched between n-TiO_(2)and p-TiO_(2).The built-in electric field of TBTm can provide a strong driving force to accelerate carrier separation and prolong carrier lifetime.Consequently,the TBT3 achieves a prominent photocurrent density,as high as 2.13 m A cm^(-2)at 1.23 V versus reversible hydrogen electrode(RHE),which is 2.4-and 1.5-times higher than TiO_(2) and TiO_(2)–Ba TiO_(3) heterojunction,respectively.Driven by mechanical deformation,the induced dipole polarization can further regulate built-in electric fields,and the piezoelectric photocurrent density of TBT3-800 is 2.84 times higher than TiO_(2) at 1.23 V vs.RHE due to the construction of piezoelectric-heterostructures.This work provides a piezoelectric polarization strategy for modulating the built-in electric field of heterojunction for PEC system.
基金supported by the National Key Research and Development Program(2021YFC2104400)the Tianjin Science and Technology Plan Project(21JCQNJC00340)the Haihe Laboratory of Sustainable Chemical Transformations。
文摘Synthesizing high-density fuel from lignocellulose can not only achieve green and low-carbon development,but also expand the feedstock source of hydrocarbon fuel.Here,we reported a route of producing high-density fuel from lignin oil and hemicellulose derivative cyclopentanol through alkylation and hydrodeoxygenation,HY with SiO_(2)/Al_(2)O_(3) molar ratio of 5.3 was screened as the alkylation catalyst in the reaction of model phenolic compounds and mixtures,and the reaction conditions were optimized to achieve conversion of phenolic compounds higher than 87%and selectivity of bicyclic and tricyclic products higher than 99%.Then two phenolic pools simulating the composition of two typic lignin oils were studied to validate the alkylation and analyze the competition mechanism of phenolic compounds in mixture system.Finally,real lignin oil from depolymerized of beech powder was tested,and notably80%of phenolic monomers in the oil were converted into fuel precursor.After hydrodeoxygenation,the alkylated product was converted to fuel blend with a density of 0.91 g/mL at 20℃and a freezing point lower than-60℃,very promising as high density fuel.This work provides a facile and energyefficient way of synthesizing high-performance jet fuel directly from lignocellulosic derivatives,which decreases processing energy consumption and improve the utilization rate of feedstock.
基金supported by the National Key R&D Program of China (2020YFA0710000)the National Natural Science Foundation of China (22278307, 22008170, 21978200, 22161142002, and 22121004)+2 种基金the Applied Basic Research Program of Qinghai Province (2023-ZJ-701)the Haihe Laboratory of Sustainable Chemical Transformationsthe Tianjin Research Innovation Project for Postgraduate Students (2022BKYZ035)。
文摘Sluggish reaction kinetics of oxygen evolution reaction(OER), resulting from multistep proton-coupled electron transfer and spin constriction, limits overall efficiency for most reported catalysts. Herein, using modeled ZnFe_(2-x)Ni_xO_(4)(0 ≤ x ≤ 0.4) spinel oxides, we aim to develop better OER electrocatalyst through combining the construction of ferromagnetic(FM) ordering channels and generation of highly active reconstructed species. The number of symmetry-breaking Fe–O–Ni structure links to the formation of FM ordering electron transfer channels. Meanwhile, as the number of Ni^(3+)increases, more ligand holes are formed, beneficial for redirecting surface reconstruction. The electro-activated ZnFe_(1.6)Ni_(0.4)O_(4) shows the highest specific activity, which is 13 and 2.5 times higher than that of ZnFe_(2)O_(4) and unactivated ZnFe_(1.6)Ni_(0.4)O_(4), and even superior to the benchmark IrO_(2) under the overpotential of 350 mV. Applying external magnetic field can make electron spin more aligned, and the activity can be further improved to 39 times of ZnFe_(2)O_(4). We propose that intriguing FM exchange-field interaction at FM/paramagnetic interfaces can penetrate FM ordering channels into reconstructed oxyhydroxide layers, thereby activating oxyhydroxide layers as spin-filter to accelerate spin-selective electron transfer. This work provides a new guideline to develop highly efficient spintronic catalysts for water oxidation and other spin-forbidden reactions.
基金the Haihe Laboratory of Sustainable Chemical Transformations for financial support。
文摘Water can be used as oxidant in conjunction with metal particles to form metal-water propellant to increase the energy of propellant.For this application,water needs to be stored in form of solid and capable of becoming liquid when use.Stable and thixotropic hydrogel has good potential as water-retaining material and oxidant of metal-based propellant.In this study,we prepared organic/inorganic composite hydrogels by combining inorganic gellants hectorite and fumed silica with organic gellant agarose,respectively.The total content of the gellants can be reduced to less than 2%by adding agarose.The influence of agarose on water content,phase transition temperature,centrifugal stability and other basic physical properties of composite hydrogels were discussed.The results show that the composite hydrogels have better thixotropy and stability than pure inorganic hydrogels,and the gel-sol transformation can be realized by applying shear force or heating to the phase transition temperature.The composite hydrogels have good shear thinning ability and improved mechanical stability.Fumed silica/agarose hydrogels have better physical stability,while the thixotropy and shear thinning ability of hectorite/agarose hydrogels are better.
基金National Key R&D Program of China,Grant/Award Number:2020YFA0710000National Natural Science Foundation of China,Grant/Award Numbers:22008170,21978200,22161142002,22121004。
文摘The Haber-Bosch process for industrial NH_(3) production is energy-intensive with heavy CO_(2) emissions.Electrochemical N_(2) reduction reaction(NRR)is an attractive carbon-neutral alternative for NH_(3) synthesis,while the challenge associated with N_(2) activation highlights the demand for efficient electrocatalysts.Herein,we demonstrate that PdCu nanoparticles with different Pd/Cu ratios anchored on boron nanosheet(PdCu/B)behave as efficient NRR electrocatalysts toward NH_(3) synthesis.Theoretical and experimental results confirm that the highly efficient NH_(3) synthesis can be achieved by regulating the charge transfer between interfaces and forming a symmetry-breaking site,which not only alleviates the hydrogen evolution but also changes the adsorption configuration of N_(2) and thus optimizes the reaction pathway of NRR over the separated Pd sites.Compared with monometallic Pd/B and Cu/B,the PdCu/B with the optimized Pd/Cu ratio of 1 exhibits superior activity and selectivity for NH_(3) synthesis.This study provides new insight into developing efficient catalysts for small energy molecule catalytic conversion via regulating the charge transfer between interfaces and constructing symmetry-breaking sites.
基金the support from the National Key R&D Program of China(2020YFA0710000)the National Natural Science Foundation of China(Nos.22008170,22278307,22222808,21978200)+1 种基金the Haihe Laboratory of Sustainable Chemical Transformationsthe Tianjin Research Innovation Project for Postgraduate Students(2022B KYZ035)。
文摘Water electrolysis,a process for producing green hydrogen from renewable energy,plays a crucial role in the transition toward a sustainable energy landscape and the realization of the hydrogen economy.Oxygen evolution reaction(OER)is a critical step in water electrolysis and is often limited by its slow kinetics.Two main mechanisms,namely the adsorbate evolution mechanism(AEM)and lattice oxygen oxidation mechanism(LOM),are commonly considered in the context of OER.However,designing efficient catalysts based on either the AEM or the LOM remains a topic of debate,and there is no consensus on whether activity and stability are directly related to a certain mechanism.Considering the above,we discuss the characteristics,advantages,and disadvantages of AEM and LOM.Additionally,we provide insights on leveraging the LOM to develop highly active and stable OER catalysts in future.For instance,it is essential to accurately differentiate between reversible and irreversible lattice oxygen redox reactions to elucidate the LOM.Furthermore,we discuss strategies for effectively activating lattice oxygen to achieve controllable steady-state exchange between lattice oxygen and an electrolyte(OH^(-)or H_(2)O).Additionally,we discuss the use of in situ characterization techniques and theoretical calculations as promising avenues for further elucidating the LOM.
基金the financial support from the Postdoctoral Science Foundation of China(2021M702810)the Haihe Laboratory of Sustainable Chemical Transformations(CYZC202103)the National Natural Science Foundation of China(21978200 and 22222808)。
文摘Antioxidants addition is believed as a facile and effective way to improve jet fuel thermal oxidation stability.However,amine antioxidants,as one of the most important antioxidants,have not received sufficient attention in the field of jet fuel autoxidation yet.Herein,the inhibition efficiency and mechanism of decane and exo-tetrahydrodicyclopentadiene(THDCPD)oxidation by di-4-tert-butylphenylamine(diarylamine)was experimentally and theoretically investigated.The results show that diarylamine can significantly inhibit decane oxidation but is less efficient for THDCPD oxidation,which is attributed to the higher energy barrier of retro-carbonyl-ene reaction(rate-determining step)in THDCPD than that in decane during diarylamine regeneration.However,the addition of diarylamine will cause undesirable color change after accelerated oxidation and produce slightly more deposits during high-temperature thermal oxidative stress for both decane and THDCPD.The results provide significant implications for the future design of effective antioxidant additives for high-performance jet fuel.
基金the support from the National Key R&D Program of China(2020YFA0710000)the National Natural Science Foundation of China(22278307,22222808,21978200)the Haihe Laboratory of Sustainable Chemical Transformations。
文摘Metal oxyhydroxides(MOOH)generated from irreversible reconstructions of transition metal compounds are intrinsic active species for oxygen evolution reaction,whose activities are still constrained by sluggish deprotonation kinetics and inherent adsorption energy scaling relations.Herein,we construct a tunable proton acceptor(TPA)on oxyhydroxides by in-situ reconstruction of metal oxoacids such as NiC2O4to accelerate deprotonation and break adsorption energy scaling relations during OER.The modified C_(2)O_(4)^(2-)as a TPA can easily extract H of*OH(forming*HC2O4intermediate)and then promote deprotonation by the transmitted hydrogen bond with*OOH along conjugated(H...)O=C-O(-H)chain.As a result,Ni OOH-C2O4shows non-concerted proton-electron transfer and improved deprotonation rate,and delivers a good OER activity(270 mV@10 mA cm-2).The conjugate acidity coefficient(pKa)of the modified oxoacid group can be a descriptor for TPA selection.This TPA strategy can be universally applied to Co-,Fe-,and Ni-based oxyhydroxides to facilitate OER efficiency.
基金This work was supported by the Scientific Research Projects of the Ministry of Education of China(6141A02033522)the National Natural Science Foundation of China(No.21978200).
文摘The development of advanced air transportation has raised new demands for high-performance liquid hydrocarbon fuels.However,the measurement of fuel properties is time-consuming,cost-intensive,and limited to the operating conditions.The physicochemical properties of aerospace fuels are directly infl uenced by chemical composition.Thus,a thorough investigation should be conducted on the inherent relationship between fuel properties and composition for the design and synthesis of high-grade fuels and the prediction of fuel properties in the future.This work summarized the eff ects of fuel composition and hydrocarbon molecular structure on the fuel physicochemical properties,including density,net heat of combustion(NHOC),low-temperature fl uidity(viscosity and freezing point),fl ash point,and thermal-oxidative stability.Several correlations and predictions of fuel properties from chemical composition were reviewed.Additionally,we correlated the fuel properties with hydrogen/carbon molar ratios(n H/C)and molecular weight(M).The results from the least-square method implicate that the coupling of H/C molar ratio and M is suitable for the estimation of density,NHOC,viscosity and eff ectiveness for the design,manufacture,and evaluation of aviation hydrocarbon fuels.
文摘Adsorption and photodegradation are promising approaches for removing organic pollutions.In this study,we combined these two processes by co-loading Fe-TiO2 and Fe2O3 quantum dots(QDs)on porous MCM-41,using a simple hydrolysis method.X-ray diffraction,high-resolution transmission electron microscopy,and X-ray photoelectron spectroscopy results indicated that Fe-TiO2 QDs are formed at low Fe precursor concentrations,while additional Fe2O3 QDs are formed at higher Fe precursor concentrations.The Fe2O3 and Fe-TiO2 QDs impart high adsorption capacity and high photoactivity to the porous MCM-41,respectively.Thus,their combination results in a synergic effect of the adsorption and photodegradation.The highest-performing sample exhibits excellent performance in removing rose bengal from aqueous solution.
基金support from the National Natural Science Foundation of China(51661145026,21676193,21506156)the Tianjin Municipal Natural Science Foundation(15JCZDJC37300)
文摘Noble-metal-free hydrogen/oxygen evolution reaction(HER/OER) electrocatalysts, especially bifunctional electrocatalysts, are essential for overall water splitting, but their performance is impeded by many factors like poor electrical conductivity. Herein, we fabricated cobalt phosphide(Co P) nanoparticles embedded in P and N co-doped carbon(PNC) matrix(Co P@PNC) to fully realize the high activity of Co P by maximizing its conductivity. Simply a carbonization coupled phosphidation approach was utilized where Co ions and organic ligands of Co-MOF were transferred into Co P and P and N co-doped carbon. The synthesized material shows an ideal electrical conductivity, excellent HER(overpotential of-84 m V and-120 m V @10 m A cmin acidic and alkaline medias, respectively) and OER(overpotential of 330 m V@10 m A cmin alkaline media) performances. Further, Co P@PNC acts as a superior catalyst for both anode and cathode to catalyze overall water splitting and only requires an voltage of 1.52 V to deliver a current density of 10 m A cm, superior to the noble-metal catalysts system(Pt/C//IrO) and the reported noble-metal-free bifunctional electrocatalysts.
基金the support from the National Natural Science Foundation of China(21978200)the Scientific Research Projects of the Ministry of Education of China(6141A02033522)。
文摘Gelled fuels are the very promising propellants for new-generation rocket and ramjet propulsion.Here we report a new type of low-molecular mass organic gellant(Z),and prepared four kinds of stable gelled fuels based on HD-01,HD-03,RP-3 and QC liquid fuels,with the critical gellant concentration less than 1%(mass).The characterizations show that the gellant can form 3D network structure,via hydrogen bonding,π-πstacking and van der Waals forces,to fix fuel molecules during the formation of gelled fuels.So,the gelled fuels show high stability,with the remaining gel mass of 0.25%(mass)Z/HD-01 more than 90%even at high centrifugal speed of 7500 r·min^(-1),but the rheological property test shows that all gelled fuels have obvious shear thinning property,which benefits its storage in gelled state while supply in liquid state.The gelation of liquid fuels by gellant Z can increase the volumetric net heat of combustion(for HD-01,it increases from 39.58 MJ·L^(-1) to 40.76 MJ·L^(-1) with 1%(mass)Z),and liquefied gelled fuels show the comparable ignition delay time with the pristine liquid fuels.So,the gelled fuels made by gellant Z have better stability,shear thinning and combustion performances,which have great potential for the practical application.
基金financially supported by the National Natural Science Foundation of China(No.21978200)Scientific Research Projects of the Ministry of Education of China(No.6141A02033522)。
文摘Aerospace aircraft has significantly improved the life quality of human beings and extended the capability of space explosion since its appearance in 1903,in which liquid propellants or fuels provide the key power source.For jet fuels,its property of energy density plays an important role in determining the flight range,load,and performance of the aircraft.Therefore,the design and fabrication of high-energy-density(HED)fuels attract more and more attention from researchers all over the world.Herein,we briefly introduce the development of liquid jet fuels and HED fuels and demonstrate the future development of HED fuels.To further improve the energy density of fuel,the approaches of design and construction of multi-cyclic and stained molecule structures are proposed.To break through the density limit of hydrocarbon fuels,the addition of energetic nanoparticles in HED fuels to produce nanofluid or gelled fuels may provide a facile and effective method to significantly increase the energy density.This work provides the perspective for the development of HED fuels for advanced aircrafts.
文摘Developing effective and practical electrocatalyst under industrial electrolysis conditions is critical for renewable hydrogen production.Herein,we report the self-supporting NiFe LDH-MoS_(x) integrated electrode for water oxidation under normal alkaline test condition(1 M KOH at 25℃)and simulated industrial electrolysis conditions(5 M KOH at 65℃).Such optimized electrode exhibits excellent oxygen evolution reaction(OER)performance with overpotential of 195 and 290 mV at current density of 100 and 400 mA·cm^(-2) under normal alkaline test condition.Notably,only over-potential of 156 and 201 mV were required to achieve the current density of 100 and 400mA·cm^(-2) under simulated industrial electrolysis conditions.No significant degradations were observed after long-term durability tests for both conditions.When using in two-electrode system,the operational voltages of 1.44 and 1.72 V were required to achieve a current density of 10 and 100 mA·cm^(-2) for the overall water splitting test(NiFe LDH-MoS_(x)/INF||20%Pt/C).Additionally,the operational voltage of employing NiFe LDH-MoS_(x)/INF as both cathode and anode merely require 1.52 V at 50mA·cm^(-2) at simulated industrial electrolysis conditions.Notably,a membrane electrode assembly(MEA)for anion exchange membrane water electrolysis(AEMWEs)using NiFe LDH-MoS_(x)/INF as an anode catalyst exhibited an energy conversion efficiency of 71.8%at current density of 400 mA·cm^(-2)in 1 M KOH at 60℃.Further experimental results reveal that sulfurized substrate not only improved the conductivity of NiFe LDH,but also regulated its electronic configurations and atomic composition,leading to the excellent activity.The easy-obtained and cost-effective integrated electrodes are expected to meet the large-scale application of industrial water electrolysis.
基金the National Natural Science Foundation of China(Nos.22161142002 and 21978200).
文摘High-energy-density liquid hydrocarbon fuels are generally synthesized using various chemical reactions to improve the performance(e.g.,range,load,speed)of aerospace vehicles.Compared with conventional fuels,such as aviation kerosene and rocket kerosene,these liquid hydrocarbon fuels possess the advantages of high-energy-density and high volumetric calorifi c value;therefore,the fuels have important application value.The photocatalytic process has shown great potential for the synthesis of a diverse range of fuels on account of its unique properties,which include good effi ciency,clean atomic economy,and low energy consumption.These characteristics have led to the emergence of the photocatalytic process as a promising complement and alternative to traditional thermocatalytic reactions for fuel synthesis.Extensive eff ort has been made toward the construction of catalysts for the multiple photocatalytic syntheses of high-energy-density fuels.In this review,we aim to summarize the research progress on the photocatalytic synthesis of high-energy-density fuel by using homogeneous and heterogeneous catalytic reactions.Specifi cally,the synthesis routes,catalysts,mechanistic features,and future challenges for the photocatalytic synthesis of high-energy-density fuel are described in detail.The highlights of this review not only promote the development of the photocatalytic synthesis of high-energy-density fuel but also expand the applications of photocatalysis to other fi elds.