Objective:Several studies have been conducted on the effects and toxicity of adding oxaliplatin to fluorouracilbased or capecitabine-based chemoradiotherapy(CRT)regimens as significantly increasing the toxic response ...Objective:Several studies have been conducted on the effects and toxicity of adding oxaliplatin to fluorouracilbased or capecitabine-based chemoradiotherapy(CRT)regimens as significantly increasing the toxic response without benefit to survival.In this study,we further explored the role of these two postoperative CRT regimens in patients with pathological stage N2 rectal cancer.Methods:This study was a subgroup analysis of a randomized clinical trial.A total of 180 patients with pathological stage N2 rectal cancer were eligible,85 received capecitabine with radiotherapy(RT),and 95 received capecitabine and oxaliplatin with RT.Patients in both groups received adjuvant chemotherapy[capecitabine and oxaliplatin(XELOX);or fluorouracil,leucovorin,and oxaliplatin(FOLFOX)]after CRT.Results:At a median follow-up of 59.2[interquartile range(IQR),34.0−96.8]months,the three-year diseasefree survival(DFS)was 53.3%and 64.9%in the control group and the experimental group,respectively[hazard ratio(HR),0.63;95%confidence interval(95%CI),0.41−0.98;P=0.04].There was no significant difference between the groups in overall survival(OS)(HR,0.62;95%CI,0.37−1.05;P=0.07),the incidence of locoregional recurrence(HR,0.62;95%CI,0.24−1.64;P=0.33),the incidence of distant metastasis(HR,0.67;95%CI,0.42−1.06;P=0.09)and grade 3−4 acute toxicities(P=0.78).For patients with survival longer than 3 years,the conditional overall survival(COS)was significantly better in the experimental group(HR,0.39;95%CI,0.16−0.96;P=0.03).Conclusions:Our results indicated that adding oxaliplatin to capecitabine-based postoperative CRT is safe and effective in patients with pathological stage N2 rectal cancer.展开更多
OBJECTIVE To study the expression of phosphorylated p38 mitogen-activated protein kinase (p-p38) and uPA and the correlation of their expression with breast cancer clinicopathological characteristics, and to investi...OBJECTIVE To study the expression of phosphorylated p38 mitogen-activated protein kinase (p-p38) and uPA and the correlation of their expression with breast cancer clinicopathological characteristics, and to investigate the role of the p38MAPK-signaling pathway in regulating uPA expression in breast cancer cells.METHODS Immunohistochemistry (S-P) was used to test the expression of p-p38 and uPA in 60 specimens of breast cancer tissues. Western blots were adopted to detect expression of the p-p38 and uPA proteins in MDA-MB-231 and MCF-7 breast cancer cells, and uPA expression after treatment with SB203580, a specific inhibitor of p38 MAPK.RESULTS The positive rate of the p-p38 protein and uPA protein expression in the breast cancer tissues was 56.7% and 60.0%,respectively. The expression of p-p38 was positively related to the expression of uPA (r = 0.316, P 〈 0.05). The expression of p-p38 and uPA was related to lymph node metastasis and the TNM stage (P 〈 0.05), but it was not related to the patient's age or tumor size (P 〉 0.05). The expression of p-p38 and uPA in MDA- MB-231 cells was higher than that in MCF-7 cells. SB203580 inhibited the p38 MAPK pathway and reduced uPA protein expression.CONCLUSION The p38 MAPK-signaling pathway promotes breast cancer malignant progression by up-regulating uPA expression ,and it may be an important process in breast cancer invasion and metastasis.展开更多
Titanium dioxide(TiO2)has a long history of application in blood contact materials,but it often suffers from insufficient anticoagulant properties.Recently,we have revealed the photocatalytic effect of TiO2 also induc...Titanium dioxide(TiO2)has a long history of application in blood contact materials,but it often suffers from insufficient anticoagulant properties.Recently,we have revealed the photocatalytic effect of TiO2 also induces anticoagulant properties.However,for long-term vascular implant devices such as vascular stents,besides anticoagulation,also anti-inflammatory,anti-hyperplastic properties,and the ability to support endothelial repair,are desired.To meet these requirements,here,we immobilized silver nanoparticles(AgNPs)on the surface of TiO2 nanotubes(TiO2-NTs)to obtain a composite material with enhanced photo-induced anticoagulant property and improvement of the other requested properties.The photo-functionalized TiO2-NTs showed protein-fouling resistance,causing the anticoagulant property and the ability to suppress cell adhesion.The immobilized AgNPs increased the photocatalytic activity of TiO2-NTs to enhances its photo-induced anticoagulant property.The AgNP density was optimized to endow the TiO2-NTs with anti-inflammatory property,a strong inhibitory effect on smooth muscle cells(SMCs),and low toxicity to endothelial cells(ECs).The in vivo test indicated that the photofunctionalized composite material achieved outstanding biocompatibility in vasculature via the synergy of photo-functionalized TiO2-NTs and the multifunctional AgNPs,and therefore has enormous potential in the field of cardiovascular implant devices.Our research could be a useful reference for further designing of multifunctional TiO2 materials with high vascular biocompatibility.展开更多
基金supported by grants from Sanming Project of Medicine in Shenzhen(No.SZSM202211030)the Science and Technology Department Basic Research Project of Shanxi(No.202203021221284)。
文摘Objective:Several studies have been conducted on the effects and toxicity of adding oxaliplatin to fluorouracilbased or capecitabine-based chemoradiotherapy(CRT)regimens as significantly increasing the toxic response without benefit to survival.In this study,we further explored the role of these two postoperative CRT regimens in patients with pathological stage N2 rectal cancer.Methods:This study was a subgroup analysis of a randomized clinical trial.A total of 180 patients with pathological stage N2 rectal cancer were eligible,85 received capecitabine with radiotherapy(RT),and 95 received capecitabine and oxaliplatin with RT.Patients in both groups received adjuvant chemotherapy[capecitabine and oxaliplatin(XELOX);or fluorouracil,leucovorin,and oxaliplatin(FOLFOX)]after CRT.Results:At a median follow-up of 59.2[interquartile range(IQR),34.0−96.8]months,the three-year diseasefree survival(DFS)was 53.3%and 64.9%in the control group and the experimental group,respectively[hazard ratio(HR),0.63;95%confidence interval(95%CI),0.41−0.98;P=0.04].There was no significant difference between the groups in overall survival(OS)(HR,0.62;95%CI,0.37−1.05;P=0.07),the incidence of locoregional recurrence(HR,0.62;95%CI,0.24−1.64;P=0.33),the incidence of distant metastasis(HR,0.67;95%CI,0.42−1.06;P=0.09)and grade 3−4 acute toxicities(P=0.78).For patients with survival longer than 3 years,the conditional overall survival(COS)was significantly better in the experimental group(HR,0.39;95%CI,0.16−0.96;P=0.03).Conclusions:Our results indicated that adding oxaliplatin to capecitabine-based postoperative CRT is safe and effective in patients with pathological stage N2 rectal cancer.
文摘OBJECTIVE To study the expression of phosphorylated p38 mitogen-activated protein kinase (p-p38) and uPA and the correlation of their expression with breast cancer clinicopathological characteristics, and to investigate the role of the p38MAPK-signaling pathway in regulating uPA expression in breast cancer cells.METHODS Immunohistochemistry (S-P) was used to test the expression of p-p38 and uPA in 60 specimens of breast cancer tissues. Western blots were adopted to detect expression of the p-p38 and uPA proteins in MDA-MB-231 and MCF-7 breast cancer cells, and uPA expression after treatment with SB203580, a specific inhibitor of p38 MAPK.RESULTS The positive rate of the p-p38 protein and uPA protein expression in the breast cancer tissues was 56.7% and 60.0%,respectively. The expression of p-p38 was positively related to the expression of uPA (r = 0.316, P 〈 0.05). The expression of p-p38 and uPA was related to lymph node metastasis and the TNM stage (P 〈 0.05), but it was not related to the patient's age or tumor size (P 〉 0.05). The expression of p-p38 and uPA in MDA- MB-231 cells was higher than that in MCF-7 cells. SB203580 inhibited the p38 MAPK pathway and reduced uPA protein expression.CONCLUSION The p38 MAPK-signaling pathway promotes breast cancer malignant progression by up-regulating uPA expression ,and it may be an important process in breast cancer invasion and metastasis.
基金the National Natural Science Foundation of China(nos.31870958,31700821,and 81771988).
文摘Titanium dioxide(TiO2)has a long history of application in blood contact materials,but it often suffers from insufficient anticoagulant properties.Recently,we have revealed the photocatalytic effect of TiO2 also induces anticoagulant properties.However,for long-term vascular implant devices such as vascular stents,besides anticoagulation,also anti-inflammatory,anti-hyperplastic properties,and the ability to support endothelial repair,are desired.To meet these requirements,here,we immobilized silver nanoparticles(AgNPs)on the surface of TiO2 nanotubes(TiO2-NTs)to obtain a composite material with enhanced photo-induced anticoagulant property and improvement of the other requested properties.The photo-functionalized TiO2-NTs showed protein-fouling resistance,causing the anticoagulant property and the ability to suppress cell adhesion.The immobilized AgNPs increased the photocatalytic activity of TiO2-NTs to enhances its photo-induced anticoagulant property.The AgNP density was optimized to endow the TiO2-NTs with anti-inflammatory property,a strong inhibitory effect on smooth muscle cells(SMCs),and low toxicity to endothelial cells(ECs).The in vivo test indicated that the photofunctionalized composite material achieved outstanding biocompatibility in vasculature via the synergy of photo-functionalized TiO2-NTs and the multifunctional AgNPs,and therefore has enormous potential in the field of cardiovascular implant devices.Our research could be a useful reference for further designing of multifunctional TiO2 materials with high vascular biocompatibility.