期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Analysis of sp Pillar Stability Experiment: Continuous thermo-mechanical model development and calibration 被引量:1
1
作者 R. Blaheta P. Byczanski +5 位作者 m. ermák R. Hrtus R. kohut A. kolcun J. malík S. Sysala 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2013年第2期124-135,共12页
The paper describes an analysis of thermo-mechanical (TM) processes appearing during the Aspo Pillar Stability Experiment (APSE). This analysis is based on finite elements with elasticity, plasticity and dam- age ... The paper describes an analysis of thermo-mechanical (TM) processes appearing during the Aspo Pillar Stability Experiment (APSE). This analysis is based on finite elements with elasticity, plasticity and dam- age mechanics models of rock behaviour and some least squares calibration techniques. The main aim is to examine the capability of continuous mechanics models to predict brittle damage behaviour of gran- ite rocks. The performed simulations use an in-house finite element software GEM and self-developed experimental continuum damage MATLAB code. The main contributions are twofold. First, it is an inverse analysis, which is used for (1) verification of an initial stress measurement by back analysis of conver- gence measurement during construction of the access tunnel and (2) identification of heat transfer rock mass properties by an inverse method based on the known heat sources and temperature measurements. Second, three different hierarchically built models are used to estimate the pillar damage zones, i.e. elas- tic model with Drucker-Prager strength criterion, elasto-plastic model with the same yield limit and a combination of elasto-plasticity with continuum damage mechanics. The damage mechanics model is also used to simulate uniaxial and triaxial compressive strength tests on the ,Aspo granite. 展开更多
关键词 In situ pillar stability experiment Continuous mechanics Damage of granite rocks Model calibration by back analysis Finite element method (FEM)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部