A colliding microjet liquid sheet target system was developed and tested for pairs of round nozzles of 10,11 and 18μm in diameter.The sheet's position stability was found to be better than a few micrometers.Upon ...A colliding microjet liquid sheet target system was developed and tested for pairs of round nozzles of 10,11 and 18μm in diameter.The sheet's position stability was found to be better than a few micrometers.Upon interaction with 50 mJ laser pulses,the 18μm jet has a resonance amplitude of 16μm at a repetition rate of 33 Hz,while towards 100 Hz it converges to 10μm for all nozzles.A white-light interferometric system was developed to measure the liquid sheet thickness in the target chamber both in air and in vacuum,with a measurement range of 182 nm±1μm and an accuracy of±3%.The overall shape and 3D shape of the sheet follow the Hasson±Peck model in air.In vacuum versus air,the sheet gradually loses 10%of its thickness,so the thinnest sheet achieved was below 200 nm at a vacuum level of 10±4mbar,and remained stable for several hours of operation.展开更多
基金The project has been supported by the National Research,Development,and Innovation Office through the National Laboratory program(contract Nos.NKFIH-877-2/2020,NKFIH-476-4/2021 and NKFIH-476-16/2021)The ELIALPS project(GINOP-2.3.6-15-2015-00001)is supported by the European Union and co-financed by the European Regional Development Fund。
文摘A colliding microjet liquid sheet target system was developed and tested for pairs of round nozzles of 10,11 and 18μm in diameter.The sheet's position stability was found to be better than a few micrometers.Upon interaction with 50 mJ laser pulses,the 18μm jet has a resonance amplitude of 16μm at a repetition rate of 33 Hz,while towards 100 Hz it converges to 10μm for all nozzles.A white-light interferometric system was developed to measure the liquid sheet thickness in the target chamber both in air and in vacuum,with a measurement range of 182 nm±1μm and an accuracy of±3%.The overall shape and 3D shape of the sheet follow the Hasson±Peck model in air.In vacuum versus air,the sheet gradually loses 10%of its thickness,so the thinnest sheet achieved was below 200 nm at a vacuum level of 10±4mbar,and remained stable for several hours of operation.