A glow discharge plasma nitriding reactor in the presence of an active screen cage is optimized in terms of current density,filling pressure and hydrogen concentrations using optical emission spectroscopy(OES).The s...A glow discharge plasma nitriding reactor in the presence of an active screen cage is optimized in terms of current density,filling pressure and hydrogen concentrations using optical emission spectroscopy(OES).The samples of AISI 304 are nitrided for different treatment times under optimum conditions.The treated samples were analyzed by X-ray diffraction(XRD) to explore the changes induced in the crystallographic structure.The XRD pattern confirmed the formation of iron and chromium nitrides arising from incorporation of nitrogen as an interstitial solid solution in the iron lattice.A Vickers microhardness tester was used to evaluate the surface hardness as a function of treatment time(h).The results showed clear evidence of improved surface hardness and a substantial amount of decrease in the treatment time compared with the previous work.展开更多
The carburizing of titanium (Ti) is accomplished by utilizing energetic ion pulses of a 1.5 kJ Mather type dense plasma focus (DPF) device operated in methane discharge. X-ray diffraction (XRD) analysis confirms...The carburizing of titanium (Ti) is accomplished by utilizing energetic ion pulses of a 1.5 kJ Mather type dense plasma focus (DPF) device operated in methane discharge. X-ray diffraction (XRD) analysis confirms the deposition of polycrystalline titanium carbide (TIC). The samples carburized at lower axial and angular positions show an improved texture for a typical (200)TIC plane. The Williamson-Hall method is employed to estimate average crystallite size and microstrains in the carburized Ti surface. Crystallite size is found to vary from - 50 to 100 nm, depending on the deposition parameters. Microstrains vary with the sample position and hence ion flux, and are converted from tensile to compressive by increasing the flux. The carburizing of Ti is confirmed by two major doublets extending from 300 to 390 cm^-1 and from 560 to 620 cm^-1 corresponding to acoustic and optical active modes in Raman spectra, respectively. Analyses by scanning electron microscopy/energy dispersive x-ray spectroscopy (SEM/EDS) have provided qualitative and quantitative profiles of the carburized surface. The Vickers microhardness of Ti is significantly improved after carburizing.展开更多
Glow discharge plasma nitriding of AISI 304 austenitic stainless steel has been carried out for different processing time under optimum discharge conditions established by spectroscopic analysis. The treated samples w...Glow discharge plasma nitriding of AISI 304 austenitic stainless steel has been carried out for different processing time under optimum discharge conditions established by spectroscopic analysis. The treated samples were analysed by X-ray diffraction (XRD) to explore the changes induced in the crystallographic structure. The XRD pattern confirmed the formation of an expanded austenite phase (TN) owing to incorporation of nitrogen as an interstitial solid solution in the iron lattice. A Vickers microhardness tester was used to evaluate the surface hardness as a function of indentation depth (μm). The results showed clear evidence of surface changes with substantial increase in surface hardness.展开更多
Optical emission spectroscopic measurement of trace rare gas is carried out to determine the density of nitrogen (N) atom, in a nitrogen plasma, as a function of filling pressure and RF power applied. 2% of argon, u...Optical emission spectroscopic measurement of trace rare gas is carried out to determine the density of nitrogen (N) atom, in a nitrogen plasma, as a function of filling pressure and RF power applied. 2% of argon, used as an actinometer, is mixed with nitrogen. In order to normalize the changes in the excitation cross section and electron energy distribution function at different operational conditions, the Ar-I emission line at 419.83 nm is used, which is of nearly the same excitation efficiency coefficient as that of the nitrogen emission line at 493.51 nm. It is observed that the emission intensity of the selected argon and atomic nitrogen lines increases with both pressure and RF power, as does the nitrogen atomic density.展开更多
Study on X-ray emission from a low energy (1.8 kJ) plasma focus devicepowered by a 9 μF capacitor bank, charged at 20 kV and giving peak discharge current of about 175kA by using a lead-inserted copper-tapered anode ...Study on X-ray emission from a low energy (1.8 kJ) plasma focus devicepowered by a 9 μF capacitor bank, charged at 20 kV and giving peak discharge current of about 175kA by using a lead-inserted copper-tapered anode is reported. The X-ray yield in different energywindows is measured as a function of hydrogen filling pressure. The maximum yield in 4π-geometry isfound to be (27.3+-1.1) J and corresponding wall plug efficiency for X-ray generation is 1.52+-0.06%. X-ray emission, presumably due to bombarding activity of electrons in current sheath at theanode tip was dominant, which is confirmed by the pinhole images. The feasibility of the device asan intense X-ray source for radiography is demonstrated.展开更多
Optical emission spectroscopy is used to investigate the nitrogen-hydrogen with trace rare gas (4% Ar) plasma generated by 50 Hz pulsed DC discharges. The filling pressure varies from 1 mbar to 5 mbar and the curren...Optical emission spectroscopy is used to investigate the nitrogen-hydrogen with trace rare gas (4% Ar) plasma generated by 50 Hz pulsed DC discharges. The filling pressure varies from 1 mbar to 5 mbar and the current density ranges from 1 mA-cm-2 to 4 mA.cm-2. The hydrogen concentration in the mixture plasma varies from 0% to 80%, with the objective of identifying the optimum pressure, current density and hydrogen concentration for active species ([N] and IN2]) generation. It is observed that in an N2-H2 gas mixture, the concentration of N atom density decreases with filling pressure and increases with current density, with other parameters of the discharge kept unchanged. The maximum concentrations of active species were found for 40% H2 in the mixture at 3 mbar pressure and current density of 4 mA.cm-2.展开更多
Langmuir probe measurements of radio frequency (RF) magnetic pole enhanced inductively coupled (MaPE-ICP) argon plasma were accomplished to obtain the electron number densities and electron temperatures. The measu...Langmuir probe measurements of radio frequency (RF) magnetic pole enhanced inductively coupled (MaPE-ICP) argon plasma were accomplished to obtain the electron number densities and electron temperatures. The measurements were carried out with a fixed RF frequency of 13.56 MHz in a pressure range of 7.5 mTorr to 75 mTorr at an applied RF power of 10 W and 100 W. These results are compared with a global (volume average) model. The results show good agreement between theoretical and experimental measurements. The electron number density shows an increasing trend with both RF power and pressure while the electron temperature shows decreasing trend as the pressure increases. The difference in the plasma potentiM and floating potential as a function of electron temperature measured from the electrical probe and that obtained theoretically shows a linear relation with a small difference in the coefficient of proportionality. The intensity of the emission line at 750.4 nm due to 2pl → 1s2 (Paschen's notation) transition closely follows the variation of ne with RF power and filling gas pressure. Measured electron energy probability function (EEPF) shows that electron occupation changes mostly in the high-energy tail, which highlights close similarity of 750.4 nm argon line to he.展开更多
A simple, low cost, easily maintained, and reliable field distortion spark gap has been developed to operate at a voltage up to 30 kV. The header construction necessary to attach the spark gap switch to a single 12.5 ...A simple, low cost, easily maintained, and reliable field distortion spark gap has been developed to operate at a voltage up to 30 kV. The header construction necessary to attach the spark gap switch to a single 12.5 μF, 40 kV (10 k J) capacitor is described. The main features of the spark gap are its wide range of voltage operation, high current capacity, low inductance and long lifetime. The performance of spark gap has been tested in a plasma focus and results are presented in this report.展开更多
基金supported by QAU URF,Pakistan Science Foundation(PSF)Project No.PSF/RES/Phys(152),HEC Project 20-2002(R&D)and HEC Project for Plasma Physics Laboratory Gomal University
文摘A glow discharge plasma nitriding reactor in the presence of an active screen cage is optimized in terms of current density,filling pressure and hydrogen concentrations using optical emission spectroscopy(OES).The samples of AISI 304 are nitrided for different treatment times under optimum conditions.The treated samples were analyzed by X-ray diffraction(XRD) to explore the changes induced in the crystallographic structure.The XRD pattern confirmed the formation of iron and chromium nitrides arising from incorporation of nitrogen as an interstitial solid solution in the iron lattice.A Vickers microhardness tester was used to evaluate the surface hardness as a function of treatment time(h).The results showed clear evidence of improved surface hardness and a substantial amount of decrease in the treatment time compared with the previous work.
基金Project partially supported by the HEC research project at QAU Islamabadthe NESCOM for providing financial support for his M. Phil studies
文摘The carburizing of titanium (Ti) is accomplished by utilizing energetic ion pulses of a 1.5 kJ Mather type dense plasma focus (DPF) device operated in methane discharge. X-ray diffraction (XRD) analysis confirms the deposition of polycrystalline titanium carbide (TIC). The samples carburized at lower axial and angular positions show an improved texture for a typical (200)TIC plane. The Williamson-Hall method is employed to estimate average crystallite size and microstrains in the carburized Ti surface. Crystallite size is found to vary from - 50 to 100 nm, depending on the deposition parameters. Microstrains vary with the sample position and hence ion flux, and are converted from tensile to compressive by increasing the flux. The carburizing of Ti is confirmed by two major doublets extending from 300 to 390 cm^-1 and from 560 to 620 cm^-1 corresponding to acoustic and optical active modes in Raman spectra, respectively. Analyses by scanning electron microscopy/energy dispersive x-ray spectroscopy (SEM/EDS) have provided qualitative and quantitative profiles of the carburized surface. The Vickers microhardness of Ti is significantly improved after carburizing.
基金supported partially by the Higher Education Commission Research Project for Plasma Physics of Pakistan
文摘Glow discharge plasma nitriding of AISI 304 austenitic stainless steel has been carried out for different processing time under optimum discharge conditions established by spectroscopic analysis. The treated samples were analysed by X-ray diffraction (XRD) to explore the changes induced in the crystallographic structure. The XRD pattern confirmed the formation of an expanded austenite phase (TN) owing to incorporation of nitrogen as an interstitial solid solution in the iron lattice. A Vickers microhardness tester was used to evaluate the surface hardness as a function of indentation depth (μm). The results showed clear evidence of surface changes with substantial increase in surface hardness.
基金supported by the Higher Education Commission (HEC) of Pakistan. G. MURTAZA and S.S. HUSSAINthe financial support of HEC in their doctoral studies
文摘Optical emission spectroscopic measurement of trace rare gas is carried out to determine the density of nitrogen (N) atom, in a nitrogen plasma, as a function of filling pressure and RF power applied. 2% of argon, used as an actinometer, is mixed with nitrogen. In order to normalize the changes in the excitation cross section and electron energy distribution function at different operational conditions, the Ar-I emission line at 419.83 nm is used, which is of nearly the same excitation efficiency coefficient as that of the nitrogen emission line at 493.51 nm. It is observed that the emission intensity of the selected argon and atomic nitrogen lines increases with both pressure and RF power, as does the nitrogen atomic density.
基金This work was partially supported by Quaid-i-Azam University Research Grant, Ministry of Science & Technology Grant, Pakistan Science Foundation Project No. PSF/R&D/C-QU/Phys (199), Higher Education Commission Project for Plasma Physics, Pakistan Atomic
文摘Study on X-ray emission from a low energy (1.8 kJ) plasma focus devicepowered by a 9 μF capacitor bank, charged at 20 kV and giving peak discharge current of about 175kA by using a lead-inserted copper-tapered anode is reported. The X-ray yield in different energywindows is measured as a function of hydrogen filling pressure. The maximum yield in 4π-geometry isfound to be (27.3+-1.1) J and corresponding wall plug efficiency for X-ray generation is 1.52+-0.06%. X-ray emission, presumably due to bombarding activity of electrons in current sheath at theanode tip was dominant, which is confirmed by the pinhole images. The feasibility of the device asan intense X-ray source for radiography is demonstrated.
基金supported by QAU URF,Pakistan Science Foundation(PSF)Project No.PSF/RES/Phys(152),HEC project 20-2002(R&D) and HEC project for Gomal University Plasma Physics Laboratorythe financial support of HEC for their doctoral studies under the indigenous fellowship scheme
文摘Optical emission spectroscopy is used to investigate the nitrogen-hydrogen with trace rare gas (4% Ar) plasma generated by 50 Hz pulsed DC discharges. The filling pressure varies from 1 mbar to 5 mbar and the current density ranges from 1 mA-cm-2 to 4 mA.cm-2. The hydrogen concentration in the mixture plasma varies from 0% to 80%, with the objective of identifying the optimum pressure, current density and hydrogen concentration for active species ([N] and IN2]) generation. It is observed that in an N2-H2 gas mixture, the concentration of N atom density decreases with filling pressure and increases with current density, with other parameters of the discharge kept unchanged. The maximum concentrations of active species were found for 40% H2 in the mixture at 3 mbar pressure and current density of 4 mA.cm-2.
基金supported partially by QAU URF, Pakistan Science Foundation (PSF) project No. PSF/RES/Phys (152)
文摘Langmuir probe measurements of radio frequency (RF) magnetic pole enhanced inductively coupled (MaPE-ICP) argon plasma were accomplished to obtain the electron number densities and electron temperatures. The measurements were carried out with a fixed RF frequency of 13.56 MHz in a pressure range of 7.5 mTorr to 75 mTorr at an applied RF power of 10 W and 100 W. These results are compared with a global (volume average) model. The results show good agreement between theoretical and experimental measurements. The electron number density shows an increasing trend with both RF power and pressure while the electron temperature shows decreasing trend as the pressure increases. The difference in the plasma potentiM and floating potential as a function of electron temperature measured from the electrical probe and that obtained theoretically shows a linear relation with a small difference in the coefficient of proportionality. The intensity of the emission line at 750.4 nm due to 2pl → 1s2 (Paschen's notation) transition closely follows the variation of ne with RF power and filling gas pressure. Measured electron energy probability function (EEPF) shows that electron occupation changes mostly in the high-energy tail, which highlights close similarity of 750.4 nm argon line to he.
基金supported partially by the Higher Education Commission Project for Plasma Physics of Pakistan
文摘A simple, low cost, easily maintained, and reliable field distortion spark gap has been developed to operate at a voltage up to 30 kV. The header construction necessary to attach the spark gap switch to a single 12.5 μF, 40 kV (10 k J) capacitor is described. The main features of the spark gap are its wide range of voltage operation, high current capacity, low inductance and long lifetime. The performance of spark gap has been tested in a plasma focus and results are presented in this report.