期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
WO_(3)微晶/g-C_(3)N_(4)的制备及其光催化性能研究
1
作者 刘成宝 马恬 +4 位作者 夏雪晴 李冉 毛栋星 钱君超 陈志刚 《苏州科技大学学报(自然科学版)》 2021年第3期37-42,共6页
以三聚氰胺为前驱物经煅烧法制备g-C_(3)N_(4)光催化材料,再引入WO_(3)微晶构建Z型异质结以提升光催化活性。优化了WO_(3)的水热时间和负载比例,获得了一系列WO_(3)/g-C_(3)N_(4)光催化复合材料。结果表明,引入WO_(3)微晶后,g-C_(3)N_(4... 以三聚氰胺为前驱物经煅烧法制备g-C_(3)N_(4)光催化材料,再引入WO_(3)微晶构建Z型异质结以提升光催化活性。优化了WO_(3)的水热时间和负载比例,获得了一系列WO_(3)/g-C_(3)N_(4)光催化复合材料。结果表明,引入WO_(3)微晶后,g-C_(3)N_(4)的禁带发生了变化,成功构建了Z型异质结,从而提高了可见光催化效率。WO_(3)负载量为20%,水热时间为10 h时,所制备的WO_(3)/g-C_(3)N_(4)具有最高的光催化性能,180 min时罗丹明B的降解效率可达83%,光催化反应速率k可达0.001 min^(-1),是纯g-C_(3)N_(4)反应速率常数的2.8倍。 展开更多
关键词 水热法 氧化钨掺杂 g-C_(3)N_(4) Z型异质结 光催化
下载PDF
基于声信号和一维卷积神经网络的电机故障诊断研究 被引量:20
2
作者 汪欣 毛东兴 李晓东 《噪声与振动控制》 CSCD 北大核心 2021年第2期125-129,共5页
针对电机故障诊断问题,设计一种新型的一维卷积神经网络结构(1D-CNN),提出一种基于声信号和1DCNN的电机故障诊断方法。为了验证1D-CNN算法在电机故障识别领域的有效性,以一组空调故障电机作为实验对象,搭建电机故障诊断平台,对4种状态... 针对电机故障诊断问题,设计一种新型的一维卷积神经网络结构(1D-CNN),提出一种基于声信号和1DCNN的电机故障诊断方法。为了验证1D-CNN算法在电机故障识别领域的有效性,以一组空调故障电机作为实验对象,搭建电机故障诊断平台,对4种状态的空调电机进行声信号采集实验,制作电机故障声信号数据集,并运用1DCNN算法对数据集进行分类,计算出基于该算法的电机故障识别准确率。实验结果表明,1D-CNN算法作为一种新型结构深度学习算法,能够对电机故障声信号进行很好分类,分类准确率高于FFT-BP、SVM、FFT-SAE等算法。为了探究1D-CNN算法内在机制,还对1D-CNN算法性能进行t-SNE可视化分析。 展开更多
关键词 故障诊断 深度学习 卷积神经网络 电机故障
下载PDF
WO_(3)-Ag/石墨相C3N4 Z型复合光催化剂的合成及其光催化性能 被引量:12
3
作者 刘成宝 唐飞 +3 位作者 朱晨 毛栋星 钱君超 陈志刚 《复合材料学报》 EI CAS CSCD 北大核心 2021年第1期209-220,共12页
采用水热法合成WO3纳米棒,并通过简单的溶剂蒸发法及光沉积法实现WO_(3)-Ag/石墨相C_(3)N_(4)(g-C_(3)N_(4))复合光催化剂的合成。采用XRD、SEM、TEM等对材料进行全面表征。结果表明,由于成功构建了Z型异质结,WO_(3)-Ag/g-C_(3)N_(4)复... 采用水热法合成WO3纳米棒,并通过简单的溶剂蒸发法及光沉积法实现WO_(3)-Ag/石墨相C_(3)N_(4)(g-C_(3)N_(4))复合光催化剂的合成。采用XRD、SEM、TEM等对材料进行全面表征。结果表明,由于成功构建了Z型异质结,WO_(3)-Ag/g-C_(3)N_(4)复合光催化剂能够拓展可见光响应,有效抑制光生电子与空穴复合。最佳工艺条件下所得WO_(3)-Ag/g-C_(3)N_(4)复合光催化剂在100 min时光催化降解罗丹明B(RhB)的效率可达96.8%,且WO_(3)-Ag/g-C_(3)N_(4)复合光催化剂具有优异的稳定性。光催化机制表明,光催化实验中真正的活性物质为羟基自由基与超氧自由基。 展开更多
关键词 C_(3)N_(4) WO_(3) AG 纳米颗粒 复合材料 光催化剂
原文传递
Grouped pair-wise comparison for subjective sound quality evaluation 被引量:2
4
作者 mao dongxing GAO Yali +1 位作者 YU Wuzhou WANG Zuomin 《Chinese Journal of Acoustics》 2006年第3期267-276,共10页
In subjective sound quality pair-wise comparison evaluation, test time grows with square of the number of sound stimulus. For this reason, subjective evaluation of large quantity of stimulus is difficult to carry out ... In subjective sound quality pair-wise comparison evaluation, test time grows with square of the number of sound stimulus. For this reason, subjective evaluation of large quantity of stimulus is difficult to carry out with pair-wise comparison method. A grouped pair-wise comparison (GPC) method is proposed to greatly decrease time and difficult of subjective comparison test, in which stimuli in the whole evaluation corpus are divided into N test groups, with reference-link stimuli configured in each group. Derived from subjective results of each group, final results of all stimuli are reconstructed, and their perceptual attributes of sound quality can be analyzed. With car interior noise as example, realization of subjective sound quality evaluation with GPC method is introduced. The results of GPC evaluation are in good agreement with those obtained from paired comparison and semantic differential methods. 展开更多
原文传递
Applicability of nonmetric multidimensional scaling to noise quality research
5
作者 JIAO Fenglei CHEN Yaobin +3 位作者 JIANG Jian GU Fengshou Andrew BALL mao dongxing 《Chinese Journal of Acoustics》 2006年第3期277-288,共12页
With loudness-equalized car interior noise as sound stimuli, the work focused on apphcabihty of nonmetric multidimensional scaling (NMDS) to sound quality research. It is presented that NMDS is an effective tool for... With loudness-equalized car interior noise as sound stimuli, the work focused on apphcabihty of nonmetric multidimensional scaling (NMDS) to sound quality research. It is presented that NMDS is an effective tool for subjective assessment research of sound quality, when listeners are clustered through correlation between hsteners. With this key clustering process, the perceptual structure of car interior noise with strong consistency is revealed. The results shown that: for car interior noise, ‘preference' can be regarded as a main sub-dimension in ‘similarity' space and listeners could be divided into two groups; For both groups of listeners, the perceptual ‘preference' can be characterized as one-dimensional descriptor, with one group has a positive relation to ‘low-frequency', while another group has a negative relation to ‘low- frequency'. 展开更多
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部