期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Surface engineering of ZnO electrocatalyst by N doping towards electrochemical CO_(2) reduction
1
作者 Rohini Subhash Kanase Getasew Mulualem Zewdie +7 位作者 maheswari arunachalam Jyoti Badiger Suzan Abdelfattah Sayed Kwang-Soon Ahn Jun-Seok Ha Uk Sim Hyeyoung Shin Soon Hyung Kang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期71-81,I0002,共12页
The discovery of efficient,selective,and stable electrocatalysts can be a key point to produce the largescale chemical fuels via electrochemical CO_(2) reduction(ECR).In this study,an earth-abundant and nontoxic ZnO-b... The discovery of efficient,selective,and stable electrocatalysts can be a key point to produce the largescale chemical fuels via electrochemical CO_(2) reduction(ECR).In this study,an earth-abundant and nontoxic ZnO-based electrocatalyst was developed for use in gas-diffusion electrodes(GDE),and the effect of nitrogen(N)doping on the ECR activity of ZnO electrocatalysts was investigated.Initially,a ZnO nanosheet was prepared via the hydrothermal method,and nitridation was performed at different times to control the N-doping content.With an increase in the N-doping content,the morphological properties of the nanosheet changed significantly,namely,the 2D nanosheets transformed into irregularly shaped nanoparticles.Furthermore,the ECR performance of Zn O electrocatalysts with different N-doping content was assessed in 1.0 M KHCO_(3) electrolyte using a gas-diffusion electrode-based ECR cell.While the ECR activity increased after a small amount of N doping,it decreased for higher N doping content.Among them,the N:ZnO-1 h electrocatalysts showed the best CO selectivity,with a faradaic efficiency(FE_(CO))of 92.7%at-0.73 V vs.reversible hydrogen electrode(RHE),which was greater than that of an undoped Zn O electrocatalyst(FE_(CO)of 63.4%at-0.78 V_(RHE)).Also,the N:ZnO-1 h electrocatalyst exhibited outstanding durability for 16 h,with a partial current density of-92.1 mA cm^(-2).This improvement of N:ZnO-1 h electrocatalyst can be explained by density functional theory calculations,demonstrating that this improvement of N:ZnO-1 h electrocatalyst comes from(ⅰ)the optimized active sites lowering the free energy barrier for the rate-determining step(RDS),and(ⅱ)the modification of electronic structure enhancing the electron transfer rate by N doping. 展开更多
关键词 ZNO N-doped ZnO Gas-diffusion electrode CO Selectivity Electrochemical CO_(2)reduction
下载PDF
Toward stable photoelectrochemical water splitting using NiOOH coated hierarchical nitrogen-doped ZnO-Si nanowires photoanodes
2
作者 Indrajit V.Bagal maheswari arunachalam +4 位作者 Ameer Abdullah Aadil Waseem Mandar AKulkarni Soon Hyung Kang Sang-Wan Ryu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第8期45-55,I0002,共12页
Photoelectrochemical(PEC)water splitting is regarded as the most promising method to generate“green hydrogen”,and zinc oxide(ZnO)has been identified as one of the promising candidates for PEC water splitting owing t... Photoelectrochemical(PEC)water splitting is regarded as the most promising method to generate“green hydrogen”,and zinc oxide(ZnO)has been identified as one of the promising candidates for PEC water splitting owing to its straddling band alignment with the water redox level.However,its PEC performance is limited due to its wide bandgap and anticipated by photocorrosion in an aqueous medium.In this work,we present strategic improvements in the PEC water splitting performance of ZnO nanowires(NWs)by nitrogen(N)-doping along with photostability by the core–shell deposition of a NiOOH cocatalyst.Highly crystalline hierarchical ZnO NWs were fabricated on Si NWs(ZnO-Si HNWs)using a metal organic chemical vapor deposition approach.The NWs were then N-doped by annealing in an NH_(3) atmosphere.The N-doped ZnO-Si HNWs(N:ZnO-Si HNWs)showed enhanced visible light absorption,and suppressed recombination of the photogenerated carriers.As compared to ZnO-Si HNWs(0.045 m A cm^(-2) at 1.23 V vs RHE),the N:ZnO-Si HNWs(0.34 m A cm^(-2) at 1.23 V vs RHE)annealed in NH^(3) ambient for 3 h at 600℃showed 7.5-fold enhancement in the photocurrent density.NiOOH-deposited N:ZnO-Si HNW photoanodes with a photostability of 82.21%over 20000 s showed 10.69-fold higher photocurrent density(0.48 m A cm^(-2) at 1.23 V vs RHE)than ZnO-Si HNWs. 展开更多
关键词 Hierarchical NWs MOCVD NiOOH cocatalyst N-DOPING Photoelectrochemical water splitting
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部