Carbonated water injection(CWI)is known as an efficient technique for both CO2 storage and enhanced oil recovery(EOR).During CWI process,CO2 moves from the water phase into the oil phase and results in oil swelling.Th...Carbonated water injection(CWI)is known as an efficient technique for both CO2 storage and enhanced oil recovery(EOR).During CWI process,CO2 moves from the water phase into the oil phase and results in oil swelling.This mechanism is considered as a reason for EOR.Viscous fingering leading to early breakthrough and leaving a large proportion of reservoir un-swept is known as an unfavorable phenomenon during flooding trials.Generally,instability at the interface due to disturbances in porous medium promotes viscous fingering phenomenon.Connate water makes viscous fingers longer and more irregular consisting of large number of tributaries leading to the ultimate oil recovery reduction.Therefore,higher in-situ water content can worsen this condition.Besides,this water can play as a barrier between oil and gas phases and adversely affect the gas diffusion,which results in EOR reduction.On the other hand,from gas storage point of view,it should be noted that CO2 solubility is not the same in the water and oil phases.In this study for a specified water salinity,the effects of different connate water saturations(Swc)on the ultimate oil recovery and CO2 storage capacity during secondary CWI are being presented using carbonate rock samples from one of Iranian carbonate oil reservoir.The results showed higher oil recovery and CO2 storage in the case of lower connate water saturation,as 14%reduction of Swc resulted in 20%and 16%higher oil recovery and CO2 storage capacity,respectively.展开更多
Enhanced oil recovery(EOR)methods are mostly based on different phenomena taking place at the interfaces between fluid–fluid and rock–fluid phases.Over the last decade,carbonated water injection(CWI)has been conside...Enhanced oil recovery(EOR)methods are mostly based on different phenomena taking place at the interfaces between fluid–fluid and rock–fluid phases.Over the last decade,carbonated water injection(CWI)has been considered as one of the multi-objective EOR techniques to store CO2 in the hydrocarbon bearing formations as well as improving oil recovery efficiency.During CWI process,as the reservoir pressure declines,the dissolved CO2 in the oil phase evolves and gas nucleation phenomenon would occur.As a result,it can lead to oil saturation restoration and subsequently,oil displacement due to the hysteresis effect.At this condition,CO2 would act as insitu dissolved gas into the oil phase,and play the role of an artificial solution gas drive(SGD).In this study,the effect of SGD as an extra oil recovery mechanism after secondary and tertiary CWI(SCWI-TCWI)modes has been experimentally investigated in carbonate rocks using coreflood tests.The depressurization tests resulted in more than 25%and 18%of original oil in place(OOIP)because of the SGD after SCWI and TCWI tests,respectively.From the ultimate enhanced oil recovery point of view,the efficiency of SGD was observed to be more than one-third of that of CWI itself.Furthermore,the pressure drop data revealed that the system pressure depends more on the oil production pattern than water production.展开更多
文摘Carbonated water injection(CWI)is known as an efficient technique for both CO2 storage and enhanced oil recovery(EOR).During CWI process,CO2 moves from the water phase into the oil phase and results in oil swelling.This mechanism is considered as a reason for EOR.Viscous fingering leading to early breakthrough and leaving a large proportion of reservoir un-swept is known as an unfavorable phenomenon during flooding trials.Generally,instability at the interface due to disturbances in porous medium promotes viscous fingering phenomenon.Connate water makes viscous fingers longer and more irregular consisting of large number of tributaries leading to the ultimate oil recovery reduction.Therefore,higher in-situ water content can worsen this condition.Besides,this water can play as a barrier between oil and gas phases and adversely affect the gas diffusion,which results in EOR reduction.On the other hand,from gas storage point of view,it should be noted that CO2 solubility is not the same in the water and oil phases.In this study for a specified water salinity,the effects of different connate water saturations(Swc)on the ultimate oil recovery and CO2 storage capacity during secondary CWI are being presented using carbonate rock samples from one of Iranian carbonate oil reservoir.The results showed higher oil recovery and CO2 storage in the case of lower connate water saturation,as 14%reduction of Swc resulted in 20%and 16%higher oil recovery and CO2 storage capacity,respectively.
文摘Enhanced oil recovery(EOR)methods are mostly based on different phenomena taking place at the interfaces between fluid–fluid and rock–fluid phases.Over the last decade,carbonated water injection(CWI)has been considered as one of the multi-objective EOR techniques to store CO2 in the hydrocarbon bearing formations as well as improving oil recovery efficiency.During CWI process,as the reservoir pressure declines,the dissolved CO2 in the oil phase evolves and gas nucleation phenomenon would occur.As a result,it can lead to oil saturation restoration and subsequently,oil displacement due to the hysteresis effect.At this condition,CO2 would act as insitu dissolved gas into the oil phase,and play the role of an artificial solution gas drive(SGD).In this study,the effect of SGD as an extra oil recovery mechanism after secondary and tertiary CWI(SCWI-TCWI)modes has been experimentally investigated in carbonate rocks using coreflood tests.The depressurization tests resulted in more than 25%and 18%of original oil in place(OOIP)because of the SGD after SCWI and TCWI tests,respectively.From the ultimate enhanced oil recovery point of view,the efficiency of SGD was observed to be more than one-third of that of CWI itself.Furthermore,the pressure drop data revealed that the system pressure depends more on the oil production pattern than water production.