Network lifetime is one of the important metrics that indicate the performance of a sensor network. Different techniques are used to elongate network lifetime. Among them, clustering is one of the popular techniques. ...Network lifetime is one of the important metrics that indicate the performance of a sensor network. Different techniques are used to elongate network lifetime. Among them, clustering is one of the popular techniques. LEACH (Low-Energy Adaptive Clustering Hierarchy) is one of the most widely cited clustering solutions due to its simplicity and effectiveness. LEACH has several parameters that can be tuned to get better performance. Percentage of cluster heads is one such important parameter which affects the network lifetime significantly. At present it is hard to find the optimum value for the percentage of cluster head parameter due to the absence of a complete mathematical model on LEACH. A complete mathematical model on LEACH can be used to tune other LEACH parameters in order to get better performance. In this paper, we formulate a new and complete mathematical model on LEACH. From this new mathematical model, we compute the value for the optimal percentage of cluster heads in order to increase the network lifetime. Simulation results verify both the correctness of our mathematical model and the effectiveness of computing the optimal percentage of cluster heads to increase the network lifetime.展开更多
Target tracking is considered as one of the cardinal applications of a wireless sensor network. Tracking multiple targets is more challenging than tracking a single target in a wireless sensor network due to targets’...Target tracking is considered as one of the cardinal applications of a wireless sensor network. Tracking multiple targets is more challenging than tracking a single target in a wireless sensor network due to targets’ movement in different directions, targets’ speed variations and frequent connectivity failures of low powered sensor nodes. If all the low-powered sensor nodes are kept active in tracking multiple targets coming from different directions of the network, there is high probability of network failure due to wastage of power. It would be more realistic if the tracking area can be reduced so that less number of sensor nodes will be active and therefore, the network will consume less energy. Tracking area can be reduced by using the target’s kinematics. There is almost no method to track multiple targets based on targets’ kinematics. In our paper, we propose a distributed tracking method for tracking multiple targets considering targets’ kinematics. We simulate our method by a sensor network simulator OMNeT++ and empirical results state that our proposed methodology outperforms traditional tracking algorithms.展开更多
Stability is one of the major concerns in advancement of Wireless Sensor Networks (WSN). A number of applications of WSN require guaranteed sensing, coverage and connectivity throughout its operational period. Death o...Stability is one of the major concerns in advancement of Wireless Sensor Networks (WSN). A number of applications of WSN require guaranteed sensing, coverage and connectivity throughout its operational period. Death of the first node might cause instability in the network. Therefore, all of the sensor nodes in the network must be alive to achieve the goal during that period. One of the major obstacles to ensure these phenomena is unbalanced energy consumption rate. Different techniques have already been proposed to improve energy consumption rate such as clustering, efficient routing, and data aggregation. However, most of them do not consider the balanced energy consumption rate which is required to improve network stability. In this paper, we present a novel technique, Stable Sensor Network (SSN) to achieve balanced energy consumption rate using dynamic clustering to guarantee stability in WSN. Our technique is based on LEACH (Low-Energy Adaptive Clustering Hierarchy), which is one of the most widely deployed simple and effective clustering solutions for WSN. We present three heuristics to increase the time before the death of first sensor node in the network. We devise the algorithm of SSN based on those heuristics and also formulate its complete mathematical model. We verify the efficiency of SSN and correctness of the mathematical model by simulation results. Our simulation results show that SSN significantly improves network stability period compared to LEACH and its best variant.展开更多
文摘Network lifetime is one of the important metrics that indicate the performance of a sensor network. Different techniques are used to elongate network lifetime. Among them, clustering is one of the popular techniques. LEACH (Low-Energy Adaptive Clustering Hierarchy) is one of the most widely cited clustering solutions due to its simplicity and effectiveness. LEACH has several parameters that can be tuned to get better performance. Percentage of cluster heads is one such important parameter which affects the network lifetime significantly. At present it is hard to find the optimum value for the percentage of cluster head parameter due to the absence of a complete mathematical model on LEACH. A complete mathematical model on LEACH can be used to tune other LEACH parameters in order to get better performance. In this paper, we formulate a new and complete mathematical model on LEACH. From this new mathematical model, we compute the value for the optimal percentage of cluster heads in order to increase the network lifetime. Simulation results verify both the correctness of our mathematical model and the effectiveness of computing the optimal percentage of cluster heads to increase the network lifetime.
文摘Target tracking is considered as one of the cardinal applications of a wireless sensor network. Tracking multiple targets is more challenging than tracking a single target in a wireless sensor network due to targets’ movement in different directions, targets’ speed variations and frequent connectivity failures of low powered sensor nodes. If all the low-powered sensor nodes are kept active in tracking multiple targets coming from different directions of the network, there is high probability of network failure due to wastage of power. It would be more realistic if the tracking area can be reduced so that less number of sensor nodes will be active and therefore, the network will consume less energy. Tracking area can be reduced by using the target’s kinematics. There is almost no method to track multiple targets based on targets’ kinematics. In our paper, we propose a distributed tracking method for tracking multiple targets considering targets’ kinematics. We simulate our method by a sensor network simulator OMNeT++ and empirical results state that our proposed methodology outperforms traditional tracking algorithms.
文摘Stability is one of the major concerns in advancement of Wireless Sensor Networks (WSN). A number of applications of WSN require guaranteed sensing, coverage and connectivity throughout its operational period. Death of the first node might cause instability in the network. Therefore, all of the sensor nodes in the network must be alive to achieve the goal during that period. One of the major obstacles to ensure these phenomena is unbalanced energy consumption rate. Different techniques have already been proposed to improve energy consumption rate such as clustering, efficient routing, and data aggregation. However, most of them do not consider the balanced energy consumption rate which is required to improve network stability. In this paper, we present a novel technique, Stable Sensor Network (SSN) to achieve balanced energy consumption rate using dynamic clustering to guarantee stability in WSN. Our technique is based on LEACH (Low-Energy Adaptive Clustering Hierarchy), which is one of the most widely deployed simple and effective clustering solutions for WSN. We present three heuristics to increase the time before the death of first sensor node in the network. We devise the algorithm of SSN based on those heuristics and also formulate its complete mathematical model. We verify the efficiency of SSN and correctness of the mathematical model by simulation results. Our simulation results show that SSN significantly improves network stability period compared to LEACH and its best variant.