期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Experimental study on using SiO_(2) nanoparticles along with surfactant in an EOR process in micromodel 被引量:2
1
作者 Mahdi Mohajeri Mohammad Reza Rasaei mahnaz hekmatzadeh 《Petroleum Research》 2019年第1期59-70,共12页
Surfactant flooding is a common chemical method for enhancing oil recovery.Recently,the simultaneous application of nanoparticles and chemical substances has been considered for improving the efficiency of EOR process... Surfactant flooding is a common chemical method for enhancing oil recovery.Recently,the simultaneous application of nanoparticles and chemical substances has been considered for improving the efficiency of EOR processes.In the present study,the microscopic and macroscopic efficiency of oil recovery in a linear micromodel in three injection cases of Sodium dodecyl sulfate(SDS)as an anionic surfactant,SiO_(2) nanoparticles,and simultaneous injection of nanoparticles and surfactant was investigated.In our study,adding the nanoparticles along with SDS(2000 ppm)decreased Interfacial tension by 84%,while the figure was 74%and only 10%when the surfactant and the nanoparticles were used alone,respectively.Seemingly,although the nanoparticles alone could not reduce IFT values,adding them to surfactant solution could strongly decrease the interfacial tension between oil and water,leading to enhancement of oil recovery.However,our findings showed that an optimum concentration of nanoparticles in surfactant solution must be used.In this regard,in low concentrations of nanoparticles,they were attached to the interface and IFT decreased due to absorption process.Nevertheless,in high concentrations,nanoparticles removed the surfactant from aqueous phase resulting in no free surfactant available in the bulk.Therefore,surfactant effectiveness in reducing IFT and alteration wettability decreased,and as a consequence,oil recovery efficiency dropped compared to lower nanoparticles’concentrations.Moreover,the results of sessile drop experiments and wettability measurements revealed that coating with either the surfactants or the nanoparticles could partially alter the wettability of surface to water-wet,while coating with the surfactants along with the nanoparticles could make a strongly water-wet surface.Seemingly,investigating the microscopic images of pores and throats showed a strong water-wet condition when the surfactant along with the nanoparticles was used.In addition,the results of flooding tests demonstrated that adding the nanoparticles to surfactant solution could increase the ultimate oil recovery significantly.Moreover,microscopic images confirmed that adding the nanoparticles to the surfactant solution can lead to forming oil-in-water and water-in-oil micro-emulsions due to ultra-low IFT.Obviously,this can result in improving the effectiveness of injection fluid to influence a wider range of porous media. 展开更多
关键词 SiO_(2)nanoparticle EOR IFT value Surfactant solution WETTABILITY MICRO-EMULSIONS
原文传递
Evaluation of gas condensate reservoir behavior using velocity dependent relative permeability during the numerical well test analysis 被引量:2
2
作者 Arash Azamifard mahnaz hekmatzadeh Bahram Dabir 《Petroleum》 2016年第2期156-165,共10页
Gas condensate is one of the most different fluids in reservoir simulation due to retrograde condensation in case of pressure reduction.In this kind of fluids,two phenomena named negative inertia and positive coupling... Gas condensate is one of the most different fluids in reservoir simulation due to retrograde condensation in case of pressure reduction.In this kind of fluids,two phenomena named negative inertia and positive coupling,become significant in the high velocity zone around the wellbore.In this study,a modified black oil simulator is developed that take into account the velocity dependent relative permeability.Against the industrial simulator that assumes linear variation of transmissibilities by pressure,modified black oil nonlinear equations are solved directly without linearization.The developed code is validated by ECLIPSE simulator.The behavior of two real gas condensate fluids,a lean and a rich one,are compared with each other.For each fluid,simulations of PVT experiments are carried out to calculate black oil property applying Coats approach for gas condensate fluids.For both fluids,the proposed models for gas condensate velocity dependent relative permeability show different influence of velocity on relative permeability in the same conditions.Moreover,it is observed that higher flow rate of gas production leads to more condensate production during constant rate well testing. 展开更多
关键词 Gas condensate Velocity dependent relative permeability Modified black oil simulation Numerical well testing
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部