Following publication of the original article[1],the authors noticed a mistake in the Supplementary file,more specifically in figures S11 and S12 where they used by mistake the same sub-figures.The original article[1]...Following publication of the original article[1],the authors noticed a mistake in the Supplementary file,more specifically in figures S11 and S12 where they used by mistake the same sub-figures.The original article[1]has been corrected.展开更多
The emergence of the Internet-of-Things is anticipated to create a vast market for what are known as smart edge devices,opening numerous opportunities across countless domains,including personalized healthcare and adv...The emergence of the Internet-of-Things is anticipated to create a vast market for what are known as smart edge devices,opening numerous opportunities across countless domains,including personalized healthcare and advanced robotics.Leveraging 3D integration,edge devices can achieve unprecedented miniaturization while simultaneously boosting processing power and minimizing energy consumption.Here,we demonstrate a back-end-of-line compatible optoelectronic synapse with a transfer learning method on health care applications,including electroencephalogram(EEG)-based seizure prediction,electromyography(EMG)-based gesture recognition,and electrocardiogram(ECG)-based arrhythmia detection.With experiments on three biomedical datasets,we observe the classification accuracy improvement for the pretrained model with 2.93%on EEG,4.90%on ECG,and 7.92%on EMG,respectively.The optical programming property of the device enables an ultralow power(2.8×10^(-13) J)fine-tuning process and offers solutions for patient-specific issues in edge computing scenarios.Moreover,the device exhibits impressive light-sensitive characteristics that enable a range of light-triggered synaptic functions,making it promising for neuromorphic vision application.To display the benefits of these intricate synaptic properties,a 5×5 optoelectronic synapse array is developed,effectively simulating human visual perception and memory functions.The proposed flexible optoelectronic synapse holds immense potential for advancing the fields of neuromorphic physiological signal processing and artificial visual systems in wearable applications.展开更多
文摘Following publication of the original article[1],the authors noticed a mistake in the Supplementary file,more specifically in figures S11 and S12 where they used by mistake the same sub-figures.The original article[1]has been corrected.
基金financial support by the Semiconductor Initiative at the King Abdullah University of Science and Technologysupported by King Abdullah University of Science and Technology(KAUST)Research Funding(KRF)under Award No.ORA-2022-5314.
文摘The emergence of the Internet-of-Things is anticipated to create a vast market for what are known as smart edge devices,opening numerous opportunities across countless domains,including personalized healthcare and advanced robotics.Leveraging 3D integration,edge devices can achieve unprecedented miniaturization while simultaneously boosting processing power and minimizing energy consumption.Here,we demonstrate a back-end-of-line compatible optoelectronic synapse with a transfer learning method on health care applications,including electroencephalogram(EEG)-based seizure prediction,electromyography(EMG)-based gesture recognition,and electrocardiogram(ECG)-based arrhythmia detection.With experiments on three biomedical datasets,we observe the classification accuracy improvement for the pretrained model with 2.93%on EEG,4.90%on ECG,and 7.92%on EMG,respectively.The optical programming property of the device enables an ultralow power(2.8×10^(-13) J)fine-tuning process and offers solutions for patient-specific issues in edge computing scenarios.Moreover,the device exhibits impressive light-sensitive characteristics that enable a range of light-triggered synaptic functions,making it promising for neuromorphic vision application.To display the benefits of these intricate synaptic properties,a 5×5 optoelectronic synapse array is developed,effectively simulating human visual perception and memory functions.The proposed flexible optoelectronic synapse holds immense potential for advancing the fields of neuromorphic physiological signal processing and artificial visual systems in wearable applications.