Analysis of agricultural production systems of hydroponic tomato in Morelos state of Mexico, through a systematic approach, called systems development of life cycle (SDLC) was performed by comparing this with the me...Analysis of agricultural production systems of hydroponic tomato in Morelos state of Mexico, through a systematic approach, called systems development of life cycle (SDLC) was performed by comparing this with the methodology known as life cycle assessment (LCA). This permits to analyze the differences in approaches of all these methodologies to propose improvements in the current system, which can allow an improved assessment of the environmental quality of agricultural products, which often is subject to confusion. That due to measurement parameters are not generally accepted by society, producers and consumers, may ensure that the process is fully sustainable and is considered quite as a green technology processes towards an ecological benefit and therefore for the humanity.展开更多
The scientific software installation testing has a main goal: Evaluate if the software meets its requirements and specifications. In this paper, the scientific software installation in six machines is evaluated. The ...The scientific software installation testing has a main goal: Evaluate if the software meets its requirements and specifications. In this paper, the scientific software installation in six machines is evaluated. The software installation was tested using a PDCA (Plan-Do-Check-Act) approach in 3 machines and were compared with other 3 machines which were installed exclusively based in the installer experience. The software installed on the machines using a PDCA approach for testing, lead to the expected results. Scientific software installation should be tested during the installation and not as a final test. A methodology based on PDCA is recommended for testing scientific software.展开更多
This paper presents the results of the characterization by thermogravimetric analysis of a new composite material called polymeric concrete. The polymeric concrete contains micro-particles obtained from High Density P...This paper presents the results of the characterization by thermogravimetric analysis of a new composite material called polymeric concrete. The polymeric concrete contains micro-particles obtained from High Density Poly-Ethylene (HDPE) mechanically recycled (post-consumer bottles);the official Mexican standard NMX-E-232-SCFI-1999 considers the HDPE as the recyclable plastic material. Thermo-grams based on weight lost were obtained from the raw material (HDPE) and the polymer concrete in order to obtain the glass transition temperature (Tg) and melting temperature (Tf). The analysis conditions were defined from 20°C to 180°C and the heat rate of 1°C/minute. The results show that the glass transition temperature of polymeric concrete is 46°C and the HDPE is 38°C. These results mean that the polymeric concrete is more resistant to decomposition. With respect to the melting temperature, the results show that the 2°C difference between polymeric concrete and HDPE is not significant. The polymeric concrete with HDPE recycled can be considered as composite material thermoplastic. The new material melts when it is heated to 146°C and has the ability to be softened, processed and reprocessed with temperature and pressure changes, which make it possible to obtain molded pieces in the desired shape.展开更多
文摘Analysis of agricultural production systems of hydroponic tomato in Morelos state of Mexico, through a systematic approach, called systems development of life cycle (SDLC) was performed by comparing this with the methodology known as life cycle assessment (LCA). This permits to analyze the differences in approaches of all these methodologies to propose improvements in the current system, which can allow an improved assessment of the environmental quality of agricultural products, which often is subject to confusion. That due to measurement parameters are not generally accepted by society, producers and consumers, may ensure that the process is fully sustainable and is considered quite as a green technology processes towards an ecological benefit and therefore for the humanity.
文摘The scientific software installation testing has a main goal: Evaluate if the software meets its requirements and specifications. In this paper, the scientific software installation in six machines is evaluated. The software installation was tested using a PDCA (Plan-Do-Check-Act) approach in 3 machines and were compared with other 3 machines which were installed exclusively based in the installer experience. The software installed on the machines using a PDCA approach for testing, lead to the expected results. Scientific software installation should be tested during the installation and not as a final test. A methodology based on PDCA is recommended for testing scientific software.
文摘This paper presents the results of the characterization by thermogravimetric analysis of a new composite material called polymeric concrete. The polymeric concrete contains micro-particles obtained from High Density Poly-Ethylene (HDPE) mechanically recycled (post-consumer bottles);the official Mexican standard NMX-E-232-SCFI-1999 considers the HDPE as the recyclable plastic material. Thermo-grams based on weight lost were obtained from the raw material (HDPE) and the polymer concrete in order to obtain the glass transition temperature (Tg) and melting temperature (Tf). The analysis conditions were defined from 20°C to 180°C and the heat rate of 1°C/minute. The results show that the glass transition temperature of polymeric concrete is 46°C and the HDPE is 38°C. These results mean that the polymeric concrete is more resistant to decomposition. With respect to the melting temperature, the results show that the 2°C difference between polymeric concrete and HDPE is not significant. The polymeric concrete with HDPE recycled can be considered as composite material thermoplastic. The new material melts when it is heated to 146°C and has the ability to be softened, processed and reprocessed with temperature and pressure changes, which make it possible to obtain molded pieces in the desired shape.