The use of low thermal conductivity materials plays an important role in the construction of energy-efficient buildings. Indeed, the improvement of the thermal properties of building walls reduces energy consumption. ...The use of low thermal conductivity materials plays an important role in the construction of energy-efficient buildings. Indeed, the improvement of the thermal properties of building walls reduces energy consumption. This study aims to determine the thermal and energy balances of a building enveloped with Typha australis on the one hand, and a building without Typha on the other hand (a building constructed with conventional materials) using the commercial software Visual TTH. The results of the heat loss calculations show that the Typha building is 62% more efficient than the conventional building. Also, the studies on air-conditioning needs resulted in energy savings of 1577.136 kWh per year for the Typha building, i.e. 1219 kg per year of CO<sub>2</sub> avoided in the air according to the SENELEC emission factor 0.773/MWh in Senegal.展开更多
文摘The use of low thermal conductivity materials plays an important role in the construction of energy-efficient buildings. Indeed, the improvement of the thermal properties of building walls reduces energy consumption. This study aims to determine the thermal and energy balances of a building enveloped with Typha australis on the one hand, and a building without Typha on the other hand (a building constructed with conventional materials) using the commercial software Visual TTH. The results of the heat loss calculations show that the Typha building is 62% more efficient than the conventional building. Also, the studies on air-conditioning needs resulted in energy savings of 1577.136 kWh per year for the Typha building, i.e. 1219 kg per year of CO<sub>2</sub> avoided in the air according to the SENELEC emission factor 0.773/MWh in Senegal.