期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Redox Memristors with Volatile Threshold Switching Behavior for Neuromorphic Computing
1
作者 Yu-Hao Wang Tian-Cheng Gong +9 位作者 Ya-Xin Ding Yang Li Wei Wang Zi-Ang Chen Nan Du Erika Covi matteo farronato Dniele Ielmini Xu-Meng Zhang Qing Luo 《Journal of Electronic Science and Technology》 CAS CSCD 2022年第4期356-374,共19页
The spiking neural network(SNN),closely inspired by the human brain,is one of the most powerful platforms to enable highly efficient,low cost,and robust neuromorphic computations in hardware using traditional or emerg... The spiking neural network(SNN),closely inspired by the human brain,is one of the most powerful platforms to enable highly efficient,low cost,and robust neuromorphic computations in hardware using traditional or emerging electron devices within an integrated system.In the hardware implementation,the building of artificial spiking neurons is fundamental for constructing the whole system.However,with the slowing down of Moore’s Law,the traditional complementary metal-oxide-semiconductor(CMOS)technology is gradually fading and is unable to meet the growing needs of neuromorphic computing.Besides,the existing artificial neuron circuits are complex owing to the limited bio-plausibility of CMOS devices.Memristors with volatile threshold switching(TS)behaviors and rich dynamics are promising candidates to emulate the biological spiking neurons beyond the CMOS technology and build high-efficient neuromorphic systems.Herein,the state-of-the-art about the fundamental knowledge of SNNs is reviewed.Moreover,we review the implementation of TS memristor-based neurons and their systems,and point out the challenges that should be further considered from devices to circuits in the system demonstrations.We hope that this review could provide clues and be helpful for the future development of neuromorphic computing with memristors. 展开更多
关键词 MEMRISTORS neuromorphic computing threshold switching
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部