Tannins are capable of producing natural dyes with antioxidant and antibacterial propertis,while synthetic dyes are commonly used in the textile industry,causing environmental issues like water pollution.This research...Tannins are capable of producing natural dyes with antioxidant and antibacterial propertis,while synthetic dyes are commonly used in the textile industry,causing environmental issues like water pollution.This research aims to utilize waste tannins as natural dyes as an alternative to synthetic dyes.This study examined the effect of the extraction method on tannin properties such as phenolic content,antioxidants,and antibacterial activity.In addition,Pyrolysis Gas Chromatography‒Mass Spectrometry(Py-GCMS)analysis was used to identify the effect of extraction temperature on the chemical elucidation of tannin.The effect of tannin concentration was evaluated against four bacteria that are usually found on human skin:Staphylococcus epidermidis,Bacillus subtilis,Propionibacterium acnes,and Staphylococcus aureus.Extraction temperature significantly influences the chemical composition of tannin,which leads to different antioxidant properties.The maximum antibacterial properties of tannin were obtained at 90℃with the inhibition zone in the range of 0.9–1.0 mm against four bacteria,tannin yield of 26.59%,Gallic Acid Equivalents or total phenolic content(GAE)of 40.30 mg/g,and Radical Scavenging Activity or antioxidant activity(RSA)of 89.88%.Moreover,the concentration of tannin was significantly linear with its antibacterial properties.Tannin was successfully applied to the textile by using alum as a mordanting agent to create an antibacterial textile.The textile’s bacterial structure damage was analyzed under Field Emission Scanning Electron Microscopy(FESEM).After 50 washings,tannin-textiles with alum-modified properties remained stable compared to those without alum,with S.aureus and S.epidermidis being the most vulnerable bacteria,as confirmed by FESEM images.Hence,tannin is a feasible alternative to harmful and nondegradable synthetic dyes and antibacterial agents.展开更多
This study explored the thermo-chemical properties of industrial hemp hurd with different provenances,maturity stages,and retting protocols.The findings were then compared to hemp hurd used in the fabrication of citri...This study explored the thermo-chemical properties of industrial hemp hurd with different provenances,maturity stages,and retting protocols.The findings were then compared to hemp hurd used in the fabrication of citric acid-bonded ultra-low-density hemp hurd particleboard.Pyrolysis-gas chromatography-mass spectrometry(Py-GC/MS),Fourier-transform infrared spectroscopy(FTIR),and thermogravimetric analysis(TGA)were employed to document the variability of the hurd and comprehend the potential impact on biobased composite applications.The choice of cultivar,maturity stage,and processing modality significantly influenced the chemical composition,presence of functional groups,and thermal stability of the hurd.Py-GC/MS revealed substantial variations in the lignin-to-carbohydrate(L/C)ratio,along with the absence of fatty acids in certain cultivars.While FTIR signals confirmed consistent functional groups,differences in peak intensities were indicative of carbohydrate variations associated with maturity and retting duration,impacting the availability of hydroxyl groups for,i.e.,interparticle bonding in citric acid-based bio-composites.Furthermore,it was observed that shorter retting durations initially enhanced the thermal resistance,but prolonged retting led to accelerated degradation,significantly reducing the hurd’s residual mass.The findings indicated notable differences among the samples,emphasizing the importance of investigating variables such as provenance/cultivar,maturity,and processing modality.This assessment is essential to ensure effective agronomic practices that align the raw material characteristics with the specific requirements of intended applications,such as the fabrication of biobased hemp hurd composites.展开更多
Enhancing awareness of personal cleanliness and antibacterial resistance has intensified the antibacterial substance request on consumable products. Antibacterial agents that have been commercialized nowadays are prod...Enhancing awareness of personal cleanliness and antibacterial resistance has intensified the antibacterial substance request on consumable products. Antibacterial agents that have been commercialized nowadays are produced from inorganic and non-renewable substances. This provides several drawbacks, particularly against health and environmental issues. Therefore, many scientists work on substituting fossil-fuel-based antibacterial agents with natural ones such as from biomass. Biomass derivatives, natural abundances of biopolymers in the world, amount to major compounds including polysaccharides (cellulose, hemicellulose, and chitosan) and polyphenol (tannin and lignin) substances which are capable to combat the growth of Gram-positive bacteria and Gram-negative bacteria. To date, no report focuses on a deep understanding of antibacterial properties derived from biomass and the internal and external factors effects. This work provides that gap because comprehensive knowledge is necessary before applying biomass to the products. The potency of biomass derivatives as antibacterial additives is also summarized. Basic knowledge of antibacterial characteristics to the application in products is highlighted in this review. Besides, the discussion about challenges and future perspectives is also delivered.展开更多
It is challenging to purify oily wastewater, which affects water-energy-food production. One promising method is membrane-based separation. This paper reviews the current research trend of applying cellulose as a memb...It is challenging to purify oily wastewater, which affects water-energy-food production. One promising method is membrane-based separation. This paper reviews the current research trend of applying cellulose as a membrane material that mimics one of three typical biostructures: superhydrophobic, underwater superoleophobic, and Janus surfaces. Nature has provided efficient and effective structures through the evolutionary process. This has inspired many researchers to create technologies that mimic nature’s structures or the fabrication process. Lotus leaves, fish scales, and Namib beetles are three representative structures with distinct functional and surface properties: superhydrophobic, underwater superoleophobic, and Janus surfaces. The characteristics of these structures have been widely studied and applied to membrane materials to improve their performance. One attractive membrane material is cellulose, whichhas been studied from the perspective of its biodegradability and sustainability. In this review, the principles, mechanisms, fabrication processes, and membrane performances are summarized and compared. The theory of wettability is also described to build a comprehensive understanding of the concept. Finally, future outlook is discussed to challenge the gap between laboratory and industrial applications.展开更多
基金funded by the JASTIP-RISH 2022(S-08)RIIM 2023 Batch 4,National Research and Innovation Agency(BRIN)Indonesia.
文摘Tannins are capable of producing natural dyes with antioxidant and antibacterial propertis,while synthetic dyes are commonly used in the textile industry,causing environmental issues like water pollution.This research aims to utilize waste tannins as natural dyes as an alternative to synthetic dyes.This study examined the effect of the extraction method on tannin properties such as phenolic content,antioxidants,and antibacterial activity.In addition,Pyrolysis Gas Chromatography‒Mass Spectrometry(Py-GCMS)analysis was used to identify the effect of extraction temperature on the chemical elucidation of tannin.The effect of tannin concentration was evaluated against four bacteria that are usually found on human skin:Staphylococcus epidermidis,Bacillus subtilis,Propionibacterium acnes,and Staphylococcus aureus.Extraction temperature significantly influences the chemical composition of tannin,which leads to different antioxidant properties.The maximum antibacterial properties of tannin were obtained at 90℃with the inhibition zone in the range of 0.9–1.0 mm against four bacteria,tannin yield of 26.59%,Gallic Acid Equivalents or total phenolic content(GAE)of 40.30 mg/g,and Radical Scavenging Activity or antioxidant activity(RSA)of 89.88%.Moreover,the concentration of tannin was significantly linear with its antibacterial properties.Tannin was successfully applied to the textile by using alum as a mordanting agent to create an antibacterial textile.The textile’s bacterial structure damage was analyzed under Field Emission Scanning Electron Microscopy(FESEM).After 50 washings,tannin-textiles with alum-modified properties remained stable compared to those without alum,with S.aureus and S.epidermidis being the most vulnerable bacteria,as confirmed by FESEM images.Hence,tannin is a feasible alternative to harmful and nondegradable synthetic dyes and antibacterial agents.
文摘This study explored the thermo-chemical properties of industrial hemp hurd with different provenances,maturity stages,and retting protocols.The findings were then compared to hemp hurd used in the fabrication of citric acid-bonded ultra-low-density hemp hurd particleboard.Pyrolysis-gas chromatography-mass spectrometry(Py-GC/MS),Fourier-transform infrared spectroscopy(FTIR),and thermogravimetric analysis(TGA)were employed to document the variability of the hurd and comprehend the potential impact on biobased composite applications.The choice of cultivar,maturity stage,and processing modality significantly influenced the chemical composition,presence of functional groups,and thermal stability of the hurd.Py-GC/MS revealed substantial variations in the lignin-to-carbohydrate(L/C)ratio,along with the absence of fatty acids in certain cultivars.While FTIR signals confirmed consistent functional groups,differences in peak intensities were indicative of carbohydrate variations associated with maturity and retting duration,impacting the availability of hydroxyl groups for,i.e.,interparticle bonding in citric acid-based bio-composites.Furthermore,it was observed that shorter retting durations initially enhanced the thermal resistance,but prolonged retting led to accelerated degradation,significantly reducing the hurd’s residual mass.The findings indicated notable differences among the samples,emphasizing the importance of investigating variables such as provenance/cultivar,maturity,and processing modality.This assessment is essential to ensure effective agronomic practices that align the raw material characteristics with the specific requirements of intended applications,such as the fabrication of biobased hemp hurd composites.
基金Besides,thanks for financing assistance(No.SKPB6412/LPDP/LPDP.3/2023)from the Indonesia Endowment Fund for Education(LPDP).
文摘Enhancing awareness of personal cleanliness and antibacterial resistance has intensified the antibacterial substance request on consumable products. Antibacterial agents that have been commercialized nowadays are produced from inorganic and non-renewable substances. This provides several drawbacks, particularly against health and environmental issues. Therefore, many scientists work on substituting fossil-fuel-based antibacterial agents with natural ones such as from biomass. Biomass derivatives, natural abundances of biopolymers in the world, amount to major compounds including polysaccharides (cellulose, hemicellulose, and chitosan) and polyphenol (tannin and lignin) substances which are capable to combat the growth of Gram-positive bacteria and Gram-negative bacteria. To date, no report focuses on a deep understanding of antibacterial properties derived from biomass and the internal and external factors effects. This work provides that gap because comprehensive knowledge is necessary before applying biomass to the products. The potency of biomass derivatives as antibacterial additives is also summarized. Basic knowledge of antibacterial characteristics to the application in products is highlighted in this review. Besides, the discussion about challenges and future perspectives is also delivered.
基金supported in part by a Kurita Asia Research Grant(20Pid001)provided by Kurita Water and Environment Foundation(Japan)supported by JSPS KAKENHI Grant Number 17KT0069(Japan).
文摘It is challenging to purify oily wastewater, which affects water-energy-food production. One promising method is membrane-based separation. This paper reviews the current research trend of applying cellulose as a membrane material that mimics one of three typical biostructures: superhydrophobic, underwater superoleophobic, and Janus surfaces. Nature has provided efficient and effective structures through the evolutionary process. This has inspired many researchers to create technologies that mimic nature’s structures or the fabrication process. Lotus leaves, fish scales, and Namib beetles are three representative structures with distinct functional and surface properties: superhydrophobic, underwater superoleophobic, and Janus surfaces. The characteristics of these structures have been widely studied and applied to membrane materials to improve their performance. One attractive membrane material is cellulose, whichhas been studied from the perspective of its biodegradability and sustainability. In this review, the principles, mechanisms, fabrication processes, and membrane performances are summarized and compared. The theory of wettability is also described to build a comprehensive understanding of the concept. Finally, future outlook is discussed to challenge the gap between laboratory and industrial applications.