期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A Density Functional Theory (DFT) Investigation on the Structure and Spectroscopic Behavior of 2-Aminoterephthalic Acid and Its Sodium Salts
1
作者 Mohammad A. Matin Samiran Bhattacharjee +2 位作者 md. aftab ali shaikh Tapas Debnath Mohammed Abdul Aziz 《Green and Sustainable Chemistry》 2020年第2期39-55,共17页
As a substitute for lithium ion batteries, Na chemistry for ion battery systems is promising materials for energy storage applications for the next generation. Herein, the structures, IR and UV-visible spectra of 2-am... As a substitute for lithium ion batteries, Na chemistry for ion battery systems is promising materials for energy storage applications for the next generation. Herein, the structures, IR and UV-visible spectra of 2-aminoterephthalic acid (H2ATA), disodium 2-aminoterephthalate (Na2ATA), trisodium 2-aminotere-phthalate (Na3ATA) and tetrasodium 2-aminoterephthalate (Na4ATA) have been studied using density functional theory (DFT/B3LYP/6-311++G(d,p)). The theoretical geometric parameters and FTIR results showed very good agreement with the experimental results. Different conformers of Na2ATA, Na3ATA and Na4ATA showed that the binding energy per sodium in Na2ATA, Na3ATA and Na4ATA is -694.94, -543.44 and -407.46 kJ/mol, respectively. The Na3ATA and Na4ATA salts are higher in energy (151.46 and 287.48 kJ/mol, respectively) than Na2ATA, indicating the higher stability of the Na2ATA complex. The calculated binding energy, enthalpy and Gibbs free energy of Na2ATA, Na3ATA and Na4ATA revealed that the compounds are thermodynamically stable. Natural bond orbital (NBO) analysis of Na2ATA, Na3ATA and Na4ATA indicated that the major interaction occurs between the lone pair electrons of the oxygen atom and anti-bonding orbitals of carbon atoms of the two carboxylate ions. UV-visible spectrum of the free H2ATA and its sodium salts Na2ATA, Na3ATA and Na4ATA were performed using the time-dependent density functional theory (TD-DFT) method at the level of B3LYP/6-311++G(d,p). The frontier molecular orbital energetic parameters and global reactivity descriptors revealed that the Na4ATA and Na3ATA complexes exhibited a higher band gap (ΔEgap) and electronegativity (χeV) than Na2ATA. 展开更多
关键词 2-Aminoterephthalic ACID SODIUM 2-Aminoterephthalate Trisodium 2-Aminoterephthalate Tetrasodium 2-Aminoterephthalate Density Functional Theory
下载PDF
The Effects of Oxidation States and Spin States of Chromium Interaction with <i>Sargassum Sp</i>.: A Spectroscopic and Density Functional Theoretical Study
2
作者 Mohammad Abdul Matin md. aftab ali shaikh +3 位作者 md. Anwar Hossain md. Alauddin Tapas Debnath Mohammed Abdul Aziz 《Green and Sustainable Chemistry》 2021年第4期125-141,共17页
The study of various oxidation states of chromium with Sargassum <i>sp</i>. is of particular interest since hexavalent chromium </span><span style="font-size:10.0pt;font-family:""&g... The study of various oxidation states of chromium with Sargassum <i>sp</i>. is of particular interest since hexavalent chromium </span><span style="font-size:10.0pt;font-family:"">is </span><span style="font-size:10.0pt;font-family:"">reduced to trivalent chromium in </span><span style="font-size:10.0pt;font-family:"">an </span><span style="font-size:10.0pt;font-family:"">aqueous solution. In this study, a systematic density functional theory (DFT) calculations were performed to study the interactions of transition metal chromium ion with different oxidation states and spin states with the <i>Sar</i></span><i><span style="font-size:10.0pt;font-family:"">gassum sp</span></i><span style="font-size:10.0pt;font-family:"">. decorated with carboxylate</span><span style="font-size:10.0pt;font-family:""> </span><span style="font-size:10.0pt;font-family:"">(acetate) at the wB97XD/6-311++</span><span style="font-size:10.0pt;font-family:""> </span><span style="font-size:10.0pt;font-family:"">G(d,p)</span><span style="font-size:10.0pt;font-family:""> </span><span style="font-size:10.0pt;font-family:"">level of theory. The structures and binding energies of chromium met<span>al</span></span><span style="font-size:10.0pt;font-family:"">-</span><span style="font-size:10.0pt;font-family:"">carboxylate complexes at various oxidation states and spin states in gas</span><span style="font-size:10.0pt;font-family:""> phase were examined. The coordination strength of Cr(VI) with the acetate <span>ligand was predominantly the strongest compare</span></span><span style="font-size:10.0pt;font-family:"">d</span><span style="font-size:10.0pt;font-family:""> to the other oxidation</span><span style="font-size:10.0pt;font-family:""> states. <span>Vibrational frequency analysis, for the homoleptic monomers of tris</span> <span>[</span><span>Cr<sup>III</sup>(AC)<sub>3</sub>]<sup>0</sup> and </span>[Cr<sup>VI</sup>(AC)<sub>3</sub>]<sup>3+</sup> complexes, illustrate good harmony with the experimental and<span> theoretical calculated frequencies. Using the time</span></span><span style="font-size:10.0pt;font-family:"">-</span><span style="font-size:10.0pt;font-family:"">dependent DFT</span><span style="font-size:10.0pt;font-family:""> (TD-DFT) at the level of CAM-B3LYP/6-311++G(d,p), the vertical excitation energies were obtained. The stabilization energies derived using the second order perturbation </span><span style="font-size:10.0pt;font-family:"">theory, <i>E</i><sub>ij</sub><sup>(2)</sup>, of NBO analysis confirmed the greater charge transfer for the</span><span style="font-size:10.0pt;font-family:""> observed trends in the metal binding. The calculated binding </span><span style="font-size:10.0pt;font-family:"">energies</span><span style="font-size:10.0pt;font-family:""> </span><span style="font-size:10.0pt;font-family:"">(ΔE) and interactions energies </span><span style="font-size:10.0pt;font-family:Symbol;">S</span><i><span style="font-size:10.0pt;font-family:"">E</span></i><sub><span style="font-size:10.0pt;font-family:"">ij</span></sub><sup><span style="font-size:10.0pt;font-family:"">(2)</span></sup><span style="font-size:10.0pt;font-family:""> favor</span><span style="font-size:10.0pt;font-family:""> </span><span style="font-size:10.0pt;font-family:"">the formation of</span><span style="font-size:10.0pt;font-family:""> [Cr<sup>VI</sup>(AC)<sub>3</sub>]<sup>3+</sup> complexes. The findings of this study identify efficient electronic factors as major contributors to the metal binding affinities, with promising possibilities for the design of metal-ligand complexes and sensing of the metal ions. 展开更多
关键词 Transition Metal Time Dependent Density Functional Theory Binding Energy Spectroscopy Electronic Properties and Homoleptic Coordinated Complex
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部