This paper presents the development of a highly efficient CT-PCF (Core-Tune Photonic Crystal Fiber) with substantial birefringence, tailored for applications in high-bit-rate communication and sensing while minimizing...This paper presents the development of a highly efficient CT-PCF (Core-Tune Photonic Crystal Fiber) with substantial birefringence, tailored for applications in high-bit-rate communication and sensing while minimizing signal loss. The design incorporates a modified broadband dispersion compensating structure, optimized for operation across the E, S, C, and L communication bands within a wavelength range spanning 1360 nm to 1625 nm. Notably, the CT-PCF demonstrates a remarkable birefringence of 2.372 × 10<sup>-2</sup> at 1550 nm, surpassing traditional PCF structures. Single-mode performance is evaluated using the Higher Order Mode Extinction Ratio (HOMER) method, revealing a peak HOMER value of 10<sup>4</sup> at 1550 nm. Furthermore, at 1550 nm, the CT-PCF exhibits exceptional nonlinear characteristics, featuring a high nonlinearity of 50.74 W<sup>-1</sup>⋅Km<sup>-1</sup> for y polarization. In comparison to existing designs, the proposed CT-PCF exhibits superior performance metrics and optical characteristics. Additionally, the y polarization dispersion coefficient of the CT-PCF at 1550 nm is measured at -3534 ps/(nm⋅km). Overall, the CT-PCF represents a significant advancement, outperforming established systems in terms of performance metrics and optical properties.展开更多
Surface plasmon resonance (SPR) sensors have grown in popularity owing to their sensitivity, precision, and capacity for a variety of applications, including detection, monitoring, and sensing, among others. Sensitivi...Surface plasmon resonance (SPR) sensors have grown in popularity owing to their sensitivity, precision, and capacity for a variety of applications, including detection, monitoring, and sensing, among others. Sensitivity and resolution are two areas where this technology has room for development. A plasmonic biosensor based on an asymmetric slotted PCF structure with extremely high sensitivity has been described and theoretically investigated. This high performance sensor is constructed and completely characterized using finite element method in COMSOL Multiphysics software environment. Sensitivity and resolution are analyzed as performance parameters for the proposed sensor. Numerical simulation exhibits the maximum wavelength-sensitivity of 1100 nm/RIU with 9.09 × 10<sup>-6</sup> RIU resolution in the broad measurement range of refractive index from 1.30 to 1.44. A polarization controller can be used to fine-tune this extremely sensitive and wide-ranging refractive index sensor to fulfil a variety of practical needs. This is performed with the consideration of the variation in the refractive index (RI) of the analyte channels. In comparison with earlier PCF-based sensors, the fiber design structure is basic, symmetrical, simple to produce, and cost-effective. Because of the asymmetric air holes and higher sensitivities of the refractive index detector, it is possible to identify biomolecules, biochemicals and other analytes.展开更多
文摘This paper presents the development of a highly efficient CT-PCF (Core-Tune Photonic Crystal Fiber) with substantial birefringence, tailored for applications in high-bit-rate communication and sensing while minimizing signal loss. The design incorporates a modified broadband dispersion compensating structure, optimized for operation across the E, S, C, and L communication bands within a wavelength range spanning 1360 nm to 1625 nm. Notably, the CT-PCF demonstrates a remarkable birefringence of 2.372 × 10<sup>-2</sup> at 1550 nm, surpassing traditional PCF structures. Single-mode performance is evaluated using the Higher Order Mode Extinction Ratio (HOMER) method, revealing a peak HOMER value of 10<sup>4</sup> at 1550 nm. Furthermore, at 1550 nm, the CT-PCF exhibits exceptional nonlinear characteristics, featuring a high nonlinearity of 50.74 W<sup>-1</sup>⋅Km<sup>-1</sup> for y polarization. In comparison to existing designs, the proposed CT-PCF exhibits superior performance metrics and optical characteristics. Additionally, the y polarization dispersion coefficient of the CT-PCF at 1550 nm is measured at -3534 ps/(nm⋅km). Overall, the CT-PCF represents a significant advancement, outperforming established systems in terms of performance metrics and optical properties.
文摘Surface plasmon resonance (SPR) sensors have grown in popularity owing to their sensitivity, precision, and capacity for a variety of applications, including detection, monitoring, and sensing, among others. Sensitivity and resolution are two areas where this technology has room for development. A plasmonic biosensor based on an asymmetric slotted PCF structure with extremely high sensitivity has been described and theoretically investigated. This high performance sensor is constructed and completely characterized using finite element method in COMSOL Multiphysics software environment. Sensitivity and resolution are analyzed as performance parameters for the proposed sensor. Numerical simulation exhibits the maximum wavelength-sensitivity of 1100 nm/RIU with 9.09 × 10<sup>-6</sup> RIU resolution in the broad measurement range of refractive index from 1.30 to 1.44. A polarization controller can be used to fine-tune this extremely sensitive and wide-ranging refractive index sensor to fulfil a variety of practical needs. This is performed with the consideration of the variation in the refractive index (RI) of the analyte channels. In comparison with earlier PCF-based sensors, the fiber design structure is basic, symmetrical, simple to produce, and cost-effective. Because of the asymmetric air holes and higher sensitivities of the refractive index detector, it is possible to identify biomolecules, biochemicals and other analytes.