The fabrication of a fully bio-sourced adsorbent of Cd(Ⅱ)by covalent immobilization of quinine on cellulose paper is described.The double bond of commercially available quinine was converted to a terminal alkyne func...The fabrication of a fully bio-sourced adsorbent of Cd(Ⅱ)by covalent immobilization of quinine on cellulose paper is described.The double bond of commercially available quinine was converted to a terminal alkyne function which was reacted with cellulose paper,chemically modified with azide functions,through a 1,3-dipolar cycloaddition,leading to Cell-Quin.The adsorption efficiency of Cell-Quin was investigated to determine the optimal pH,contact time and dose of adsorbent,ultimately leading to high levels of removal.The mechanism of adsorption of Cell-Quin was deeply rationalized through kinetic experiments and isotherm modeling.We also showed that Cell-Quin could adsorb other heavy metals such as Cu(Ⅱ),Pb(Ⅱ),Ni(Ⅱ)and Zn(Ⅱ).展开更多
基金the University of Nantes and the“Centre National de la Recherche Scientifique”(CNRS)for the financial supportthe“Ministère de l’Enseignement Supérieur et de la Recherche Scientifique de Cote d’Ivoire”for a grant
文摘The fabrication of a fully bio-sourced adsorbent of Cd(Ⅱ)by covalent immobilization of quinine on cellulose paper is described.The double bond of commercially available quinine was converted to a terminal alkyne function which was reacted with cellulose paper,chemically modified with azide functions,through a 1,3-dipolar cycloaddition,leading to Cell-Quin.The adsorption efficiency of Cell-Quin was investigated to determine the optimal pH,contact time and dose of adsorbent,ultimately leading to high levels of removal.The mechanism of adsorption of Cell-Quin was deeply rationalized through kinetic experiments and isotherm modeling.We also showed that Cell-Quin could adsorb other heavy metals such as Cu(Ⅱ),Pb(Ⅱ),Ni(Ⅱ)and Zn(Ⅱ).