Mirs Bay is a semi-enclosed bay neighboring the Zhujiang(Pearl)River estuary,one of the largest estuarine systems in the world.The long-term historical observational data(1994-2017)of temperature,salinity,dissolved ox...Mirs Bay is a semi-enclosed bay neighboring the Zhujiang(Pearl)River estuary,one of the largest estuarine systems in the world.The long-term historical observational data(1994-2017)of temperature,salinity,dissolved oxygen(DO),and biochemical parameters were used to examine the spatiotemporal distribution of hypoxia in Mirs Bay and adjacent coastal waters.Results show that bottom hypoxia varied seasonally and interannually.Hypoxia mainly occurred from June to September in Mirs Bay and the transition zone in the southern waters of Hong Kong,and the recorded hypoxia events have increased from 2007.The density difference between the bottom and surface layers was positively related to the bottom apparent oxygen utilization(AOU)(R=0.620,P<0.001)and negatively related to the bottom DO(R=0.616,P<0.001),indicating that water column stratification was an essential prerequisite for the formation of bottom hypoxia in summer.The bottom oxygen consumption and hypoxia had higher positive correlation with the seasonal thermocline(R=0.683,P<0.001)than the halocline(R=0.540,P<0.001),including in the area was affected by freshwater plume.The insignificant relationship between AOU and nutrients indicated that local eutrophication was not the only important factor in the formation of the hypoxic zone during summer.The decrease in phosphorous owing to the pollutant reduction policy and the increase in nitrate may have led to an increase in hypoxia events in the bay where waters therein are characterized by nitrogen-limitation.The increase in chemical oxygen demand in wastewater also promoted oxygen consumption.Compared to the adjacent coastal waters influenced by Zhujiang River plume water,the Mirs Bay experienced more hypoxia events.The high concentrations of ammonium and total Kjeldahl nitrogen in the sediment of Mirs Bay increased the oxygen depletion in the bottom water.The long residence time of the near-bottom water in Mirs Bay increased the risk of bottom hypoxia events,although the nutrient concentrations were lower than those in the transition zone.These factors lead to differences in hypoxia occurrence in Mirs Bay and adjacent coastal waters.展开更多
Internal waves(IWs)are small-scale physical processes that occur frequently in stratified marginal seas.IWs are ubiquitous and well documented in the northern South China Sea(n SCS),but few studies have explored the e...Internal waves(IWs)are small-scale physical processes that occur frequently in stratified marginal seas.IWs are ubiquitous and well documented in the northern South China Sea(n SCS),but few studies have explored the ecosystem responses to the IWs.MODISA chlorophyll-a(Chl-a)data from 2002 to 2014 were used to examine the distribution of Chl a near the Dongsha Atoll(DSA).Composite Chl a from about 40 IWs during spring and summer showed stronger response on the northern side than on the southern side of the DSA.One day after the passage of IWs,composite surface Chl a on the northern side increased from 0.11 mg/m3 to a maximum mean value of 0.18 mg/m3.It decreased to 0.13 mg/m3 after two days and maintained that level for several days after the passage of IWs.The enhanced surface Chl a likely caused subsurface Chl-a maximum and nutrients in the surface layer.Approximately 64%of the increase in surface Chl a was due to the uplift of the subsurface Chl-a maximum one day after the passage of IWs,while nutrient-induced new phytoplankton growth contributed about 18%of the increase a few days later.When the IWs occurred frequently in spring and summer,Chl-a level on the northern side was about 30%higher than that on the southern side.IW dissipation and its impact on nutrients and chlorophyll were stronger on the northern side of the DSA than on the south,which caused a north-south asymmetric distribution of Chl a in the region.展开更多
As COVID-19 poses a major threat to people’s health and economy,there is an urgent need for forecasting methodologies that can anticipate its trajectory efficiently.In non-stationary time series forecasting jobs,ther...As COVID-19 poses a major threat to people’s health and economy,there is an urgent need for forecasting methodologies that can anticipate its trajectory efficiently.In non-stationary time series forecasting jobs,there is frequently a hysteresis in the anticipated values relative to the real values.The multilayer deep-time convolutional network and a feature fusion network are combined in this paper’s proposal of an enhanced Multilayer Deep Time Convolutional Neural Network(MDTCNet)for COVID-19 prediction to address this problem.In particular,it is possible to record the deep features and temporal dependencies in uncertain time series,and the features may then be combined using a feature fusion network and a multilayer perceptron.Last but not least,the experimental verification is conducted on the prediction task of COVID-19 real daily confirmed cases in the world and the United States with uncertainty,realizing the short-term and long-term prediction of COVID-19 daily confirmed cases,and verifying the effectiveness and accuracy of the suggested prediction method,as well as reducing the hysteresis of the prediction results.展开更多
A cruise was commissioned in the summer of 2009 to evaluate water quality in the Pearl River Estuary (PRE). Chemometrics such as Principal Component Analysis (PCA), Cluster analysis (CA) and Self-Organiz- ing M...A cruise was commissioned in the summer of 2009 to evaluate water quality in the Pearl River Estuary (PRE). Chemometrics such as Principal Component Analysis (PCA), Cluster analysis (CA) and Self-Organiz- ing Map (SOM) were employed to identify anthropogenic and natural influences on estuary water quality. The scores of stations in the surface layer in the first principal component (PC1) were related to NH4-N, PO4-P, NO2-N, NO3-N, TP, and Chlorophyll a while salinity, turbidity, and SiO3-Si in the second principal component (PC2). Similarly, the scores of stations in the bottom layers in PC1 were related to PO4-P, NO2-N, NO3-N, and TP, while salinity, Chlorophyll a, NH4-N, and SiO3-Si in PC2. Results of the PCA identified the spatial distribution of the surface and bottom water quality, namely the Guangzhou urban reach, Middle reach, and Lower reach of the estuary. Both cluster analysis and PCA produced the similar results. Self-organizing map delineated the Guangzhou urban reach of the Pearl River that was mainly influenced by human activities. The middle and lower reaches of the PRE were mainly influenced by the waters in the South China Sea. The information extracted by PCA, CA, and SOM would be very useful to regional agencies in developing a strategy to carry out scientific plans for resource use based on marine system functions.展开更多
Plasticity in the glutamatergic synapses on striatal medium spiny neurons(MSNs)is not only essential for behavioral adaptation but also extremely vulnerable to drugs of abuse.Modulation on these synapses by even a sin...Plasticity in the glutamatergic synapses on striatal medium spiny neurons(MSNs)is not only essential for behavioral adaptation but also extremely vulnerable to drugs of abuse.Modulation on these synapses by even a single exposure to an addictive drug may interfere with the plasticity required by behavioral learning and thus produce impairment.In the present work,we found that the negative reinforcement learning,escaping mild foot-shocks by correct nose-poking,was impaired by a single in vivo exposure to 20 mg/kg cocaine 24 h before the learning in mice.Either a single exposure to cocaine or reinforcement learning potentiates the glutamatergic synapses on MSNs expressing the striatal dopamine 1(D1)receptor(D1-MSNs).However,24 h after the cocaine exposure,the potentiation required for reinforcement learning was disrupted.Specific manipulation of the activity of striatal D1-MSNs in D1-cre mice demonstrated that activation of these MSNs impaired reinforcement learning in normal D1-cre mice,but inhibition of these neurons reversed the reinforcement learning impairment induced by cocaine.The results suggest that cocaine potentiates the activity of direct pathway neurons in the dorsomedial striatum and this potentiation might disrupt the potentiation produced during and required for reinforcement learning.展开更多
基金Supported by the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(Nos.GML2019ZD0302,GML2019ZD0303)the National Natural Science Foundation of China(No.31971480)the State Key Laboratory of Tropical Oceanology Independent Research Fund(No.LTOZZ2103)。
文摘Mirs Bay is a semi-enclosed bay neighboring the Zhujiang(Pearl)River estuary,one of the largest estuarine systems in the world.The long-term historical observational data(1994-2017)of temperature,salinity,dissolved oxygen(DO),and biochemical parameters were used to examine the spatiotemporal distribution of hypoxia in Mirs Bay and adjacent coastal waters.Results show that bottom hypoxia varied seasonally and interannually.Hypoxia mainly occurred from June to September in Mirs Bay and the transition zone in the southern waters of Hong Kong,and the recorded hypoxia events have increased from 2007.The density difference between the bottom and surface layers was positively related to the bottom apparent oxygen utilization(AOU)(R=0.620,P<0.001)and negatively related to the bottom DO(R=0.616,P<0.001),indicating that water column stratification was an essential prerequisite for the formation of bottom hypoxia in summer.The bottom oxygen consumption and hypoxia had higher positive correlation with the seasonal thermocline(R=0.683,P<0.001)than the halocline(R=0.540,P<0.001),including in the area was affected by freshwater plume.The insignificant relationship between AOU and nutrients indicated that local eutrophication was not the only important factor in the formation of the hypoxic zone during summer.The decrease in phosphorous owing to the pollutant reduction policy and the increase in nitrate may have led to an increase in hypoxia events in the bay where waters therein are characterized by nitrogen-limitation.The increase in chemical oxygen demand in wastewater also promoted oxygen consumption.Compared to the adjacent coastal waters influenced by Zhujiang River plume water,the Mirs Bay experienced more hypoxia events.The high concentrations of ammonium and total Kjeldahl nitrogen in the sediment of Mirs Bay increased the oxygen depletion in the bottom water.The long residence time of the near-bottom water in Mirs Bay increased the risk of bottom hypoxia events,although the nutrient concentrations were lower than those in the transition zone.These factors lead to differences in hypoxia occurrence in Mirs Bay and adjacent coastal waters.
基金Supported by the National Natural Science Foundation of China(Nos.31971480,41730536)the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(No.GML2019ZD0303)。
文摘Internal waves(IWs)are small-scale physical processes that occur frequently in stratified marginal seas.IWs are ubiquitous and well documented in the northern South China Sea(n SCS),but few studies have explored the ecosystem responses to the IWs.MODISA chlorophyll-a(Chl-a)data from 2002 to 2014 were used to examine the distribution of Chl a near the Dongsha Atoll(DSA).Composite Chl a from about 40 IWs during spring and summer showed stronger response on the northern side than on the southern side of the DSA.One day after the passage of IWs,composite surface Chl a on the northern side increased from 0.11 mg/m3 to a maximum mean value of 0.18 mg/m3.It decreased to 0.13 mg/m3 after two days and maintained that level for several days after the passage of IWs.The enhanced surface Chl a likely caused subsurface Chl-a maximum and nutrients in the surface layer.Approximately 64%of the increase in surface Chl a was due to the uplift of the subsurface Chl-a maximum one day after the passage of IWs,while nutrient-induced new phytoplankton growth contributed about 18%of the increase a few days later.When the IWs occurred frequently in spring and summer,Chl-a level on the northern side was about 30%higher than that on the southern side.IW dissipation and its impact on nutrients and chlorophyll were stronger on the northern side of the DSA than on the south,which caused a north-south asymmetric distribution of Chl a in the region.
基金supported by the major scientific and technological research project of Chongqing Education Commission(KJZD-M202000802)The first batch of Industrial and Informatization Key Special Fund Support Projects in Chongqing in 2022(2022000537).
文摘As COVID-19 poses a major threat to people’s health and economy,there is an urgent need for forecasting methodologies that can anticipate its trajectory efficiently.In non-stationary time series forecasting jobs,there is frequently a hysteresis in the anticipated values relative to the real values.The multilayer deep-time convolutional network and a feature fusion network are combined in this paper’s proposal of an enhanced Multilayer Deep Time Convolutional Neural Network(MDTCNet)for COVID-19 prediction to address this problem.In particular,it is possible to record the deep features and temporal dependencies in uncertain time series,and the features may then be combined using a feature fusion network and a multilayer perceptron.Last but not least,the experimental verification is conducted on the prediction task of COVID-19 real daily confirmed cases in the world and the United States with uncertainty,realizing the short-term and long-term prediction of COVID-19 daily confirmed cases,and verifying the effectiveness and accuracy of the suggested prediction method,as well as reducing the hysteresis of the prediction results.
基金Acknowledgements This research was supported by the National Natural Science Foundation of China (Grant Nos. 41206082 and 31270528), Natural Science Foundation of Guangdong (Nos. S2013020012823), Scientific Research Project of Guangzhou (No. 15020023), the project of Guangdong Provincial Department of Science and Technology (No. 2012A032100004), the projects of knowledge innovation program of State Key Laboratory of Tropical Oceanography (Nos. LTOZZ1402 and LTOZZ1604), the Key Laboratory for Ecological Environment in Coastal Area, State Oceanic Administation (No. 201507), Key Laboratory of Fishery Ecology and Environment, Guangdong Province (No. LFE-2010-14) and the visiting scholar project of the Chinese Academy Sciences overseas study program.
文摘A cruise was commissioned in the summer of 2009 to evaluate water quality in the Pearl River Estuary (PRE). Chemometrics such as Principal Component Analysis (PCA), Cluster analysis (CA) and Self-Organiz- ing Map (SOM) were employed to identify anthropogenic and natural influences on estuary water quality. The scores of stations in the surface layer in the first principal component (PC1) were related to NH4-N, PO4-P, NO2-N, NO3-N, TP, and Chlorophyll a while salinity, turbidity, and SiO3-Si in the second principal component (PC2). Similarly, the scores of stations in the bottom layers in PC1 were related to PO4-P, NO2-N, NO3-N, and TP, while salinity, Chlorophyll a, NH4-N, and SiO3-Si in PC2. Results of the PCA identified the spatial distribution of the surface and bottom water quality, namely the Guangzhou urban reach, Middle reach, and Lower reach of the estuary. Both cluster analysis and PCA produced the similar results. Self-organizing map delineated the Guangzhou urban reach of the Pearl River that was mainly influenced by human activities. The middle and lower reaches of the PRE were mainly influenced by the waters in the South China Sea. The information extracted by PCA, CA, and SOM would be very useful to regional agencies in developing a strategy to carry out scientific plans for resource use based on marine system functions.
基金the National Natural Science Foundation of China(81971285,11727813)the Fundamental Research Funds for the Central Universities(GK202005001),Shaanxi Normal University.
文摘Plasticity in the glutamatergic synapses on striatal medium spiny neurons(MSNs)is not only essential for behavioral adaptation but also extremely vulnerable to drugs of abuse.Modulation on these synapses by even a single exposure to an addictive drug may interfere with the plasticity required by behavioral learning and thus produce impairment.In the present work,we found that the negative reinforcement learning,escaping mild foot-shocks by correct nose-poking,was impaired by a single in vivo exposure to 20 mg/kg cocaine 24 h before the learning in mice.Either a single exposure to cocaine or reinforcement learning potentiates the glutamatergic synapses on MSNs expressing the striatal dopamine 1(D1)receptor(D1-MSNs).However,24 h after the cocaine exposure,the potentiation required for reinforcement learning was disrupted.Specific manipulation of the activity of striatal D1-MSNs in D1-cre mice demonstrated that activation of these MSNs impaired reinforcement learning in normal D1-cre mice,but inhibition of these neurons reversed the reinforcement learning impairment induced by cocaine.The results suggest that cocaine potentiates the activity of direct pathway neurons in the dorsomedial striatum and this potentiation might disrupt the potentiation produced during and required for reinforcement learning.