Spontaneous time-reversal symmetry breaking plays an important role in studying strongly correlated unconventional superconductors.When two superconducting gap functions with different symmetries compete,the relative ...Spontaneous time-reversal symmetry breaking plays an important role in studying strongly correlated unconventional superconductors.When two superconducting gap functions with different symmetries compete,the relative phase channel(θ_(-)≡θ_(1)-θ_(2))exhibits an Ising-type Z_(2) symmetry due to the second order Josephson coupling,where θ_(1,2) are the phases of two gap functions.In contrast,the U(1) symmetry in the channel of θ_(+)≡(θ_(1)+θ_(2))/2 is intact.The phase locking,i.e.,ordering of θ_(-),can take place in the phase fluctuation regime before the onset of superconductivity,i.e.,when θ_(+) is disordered.If θ_(-) is pinned at ±π/2,then timereversal symmetry is broken in the normal state,otherwise,if θ_(-)=0,or,π,rotational symmetry is broken,leading to a nematic normal state.In both cases,the order parameters possess a 4-fermion structure beyond the scope of mean-field theory,which can be viewed as a high order symmetry breaking.We employ an effective two-component XY-model assisted by a renormalization group analysis to address this problem.As a natural by-product,we also find the other interesting intermediate phase corresponds to ordering of θ_+ but with θ_(-)disordered.This is the quartetting,or,charge-4e,superconductivity,which occurs above the low temperature Z_(2)-breaking charge-2e superconducting phase.Our results provide useful guidance for studying novel symmetry breaking phases in strongly correlated superconductors.展开更多
Topological states of matter possess bulk electronic structures categorized by topological invariants and edge/surface states due to the bulk-boundary correspondence. Topological materials hold great potential in the ...Topological states of matter possess bulk electronic structures categorized by topological invariants and edge/surface states due to the bulk-boundary correspondence. Topological materials hold great potential in the development of dissipationless spintronics, information storage and quantum computation, particularly if combined with magnetic order intrinsically or extrinsically. Here, we review the recent progress in the exploration of intrinsic magnetic topological materials, including but not limited to magnetic topological insulators, magnetic topological metals, and magnetic Weyl semimetals. We pay special attention to their characteristic band features such as the gap of topological surface state, gapped Dirac cone induced by magnetization (either bulk or surface), Weyl nodal point/line and Fermi arc, as well as the exotic transport responses resulting from such band features. We conclude with a brief envision for experimental explorations of new physics or effects by incorporating other orders in intrinsic magnetic topological materials.展开更多
Dehydrating large amounts of sludge produced by sewage treatment plants is difficult.Microwave pretreatment can effectively and significantly improve the dewaterability and hydrogen production of sludge subjected to a...Dehydrating large amounts of sludge produced by sewage treatment plants is difficult.Microwave pretreatment can effectively and significantly improve the dewaterability and hydrogen production of sludge subjected to anaerobic digestion. The aim of this study was to investigate the effects of different microwave conditions on hydrogen production from anaerobic digestion and dewaterability of sludge. Based on an analysis of the electric field distribution, a spiral reactor was designed and a continuous microwave system was built to conduct intermittent and continuous experiments under different conditions. Settling Volume, Capillary Suction Time, particle size, and moisture content of the sludge were measured. The results show that sludge pretreatment in continuous experiments has equally remarkable dehydration performance as in intermittent experiments; the minimum moisture content was 77.29% in the intermittent experiment under a microwave power of 300 W and an exposure time of 60 sec, and that in the continuous experiment was 77.56% under a microwave power of 400 W and an exposure time of 60 sec.The peak measured by Differential Scanning Calorimeter appeared earliest under a microwave power of 600 W and an exposure time of 180 sec. The heat flux at the peak was 4.343 W/g, which is relatively small. This indicates that microwave pretreatment induced desirable effects. The maximum yield of hydrogen production was 7.967% under the conditions of microwave power of 500 W, exposure time of 120 sec, and water bath at 55℃. This research provides a theoretical and experimental basis for the development of a continuous microwave sludge-conditioning system.展开更多
基金supported by a startup funding of UCSD and the National Science Foundation (Grant No. DMR-2238360)supported by the National Natural Science Foundation of China (Grant Nos. 12234016, and 12174317)supported by the New Cornerstone Science Foundation。
文摘Spontaneous time-reversal symmetry breaking plays an important role in studying strongly correlated unconventional superconductors.When two superconducting gap functions with different symmetries compete,the relative phase channel(θ_(-)≡θ_(1)-θ_(2))exhibits an Ising-type Z_(2) symmetry due to the second order Josephson coupling,where θ_(1,2) are the phases of two gap functions.In contrast,the U(1) symmetry in the channel of θ_(+)≡(θ_(1)+θ_(2))/2 is intact.The phase locking,i.e.,ordering of θ_(-),can take place in the phase fluctuation regime before the onset of superconductivity,i.e.,when θ_(+) is disordered.If θ_(-) is pinned at ±π/2,then timereversal symmetry is broken in the normal state,otherwise,if θ_(-)=0,or,π,rotational symmetry is broken,leading to a nematic normal state.In both cases,the order parameters possess a 4-fermion structure beyond the scope of mean-field theory,which can be viewed as a high order symmetry breaking.We employ an effective two-component XY-model assisted by a renormalization group analysis to address this problem.As a natural by-product,we also find the other interesting intermediate phase corresponds to ordering of θ_+ but with θ_(-)disordered.This is the quartetting,or,charge-4e,superconductivity,which occurs above the low temperature Z_(2)-breaking charge-2e superconducting phase.Our results provide useful guidance for studying novel symmetry breaking phases in strongly correlated superconductors.
基金This work was supported by the National Key R&D Program of China(Grant Nos.2022YFA1403700 and 2020YFA0308900)the National Natural Science Foundation of China(NSFC)(Grant Nos.12074163,12074161,and 11504159)+3 种基金NSFC Guangdong(No.2016A030313650)Guangdong Basic and Applied Basic Research Foundation(Grant Nos.2022B1515020046,2022B1515130005 and 2021B1515130007)the Guangdong Innovative and Entrepreneurial Research Team Program(Grant Nos.2019ZT08C044 and 2016ZT06D348)Shenzhen Science and Technology Program(Grant No.KQTD20190929173815000).
文摘Topological states of matter possess bulk electronic structures categorized by topological invariants and edge/surface states due to the bulk-boundary correspondence. Topological materials hold great potential in the development of dissipationless spintronics, information storage and quantum computation, particularly if combined with magnetic order intrinsically or extrinsically. Here, we review the recent progress in the exploration of intrinsic magnetic topological materials, including but not limited to magnetic topological insulators, magnetic topological metals, and magnetic Weyl semimetals. We pay special attention to their characteristic band features such as the gap of topological surface state, gapped Dirac cone induced by magnetization (either bulk or surface), Weyl nodal point/line and Fermi arc, as well as the exotic transport responses resulting from such band features. We conclude with a brief envision for experimental explorations of new physics or effects by incorporating other orders in intrinsic magnetic topological materials.
基金supported by a National Natural Science Fund project(No.51104022)teacher team construction Top-notch Youth Project(municipal)(No.PXM2016 014222 000043)
文摘Dehydrating large amounts of sludge produced by sewage treatment plants is difficult.Microwave pretreatment can effectively and significantly improve the dewaterability and hydrogen production of sludge subjected to anaerobic digestion. The aim of this study was to investigate the effects of different microwave conditions on hydrogen production from anaerobic digestion and dewaterability of sludge. Based on an analysis of the electric field distribution, a spiral reactor was designed and a continuous microwave system was built to conduct intermittent and continuous experiments under different conditions. Settling Volume, Capillary Suction Time, particle size, and moisture content of the sludge were measured. The results show that sludge pretreatment in continuous experiments has equally remarkable dehydration performance as in intermittent experiments; the minimum moisture content was 77.29% in the intermittent experiment under a microwave power of 300 W and an exposure time of 60 sec, and that in the continuous experiment was 77.56% under a microwave power of 400 W and an exposure time of 60 sec.The peak measured by Differential Scanning Calorimeter appeared earliest under a microwave power of 600 W and an exposure time of 180 sec. The heat flux at the peak was 4.343 W/g, which is relatively small. This indicates that microwave pretreatment induced desirable effects. The maximum yield of hydrogen production was 7.967% under the conditions of microwave power of 500 W, exposure time of 120 sec, and water bath at 55℃. This research provides a theoretical and experimental basis for the development of a continuous microwave sludge-conditioning system.