Salt and saline-alkaline stress seriously threaten crop production and food security worldwide(Yang and Guo,2018).Identifying genes that confer tolerance to these conditions without yield penalty would help mitigate t...Salt and saline-alkaline stress seriously threaten crop production and food security worldwide(Yang and Guo,2018).Identifying genes that confer tolerance to these conditions without yield penalty would help mitigate this problem through molecular breeding(Liang et al.,2023;Sahu and Liu,2023).Although numerous stress-tolerance genes have been identified,their application potential in molecular breeding has rarely been confirmed through multi-year and multi-site field trials.展开更多
Bread wheat(Triticum aestivum L.)is a major crop that feeds 40%of the world’s population.Over the past several decades,advances in genomics have led to tremendous achievements in understanding the origin and domestic...Bread wheat(Triticum aestivum L.)is a major crop that feeds 40%of the world’s population.Over the past several decades,advances in genomics have led to tremendous achievements in understanding the origin and domestication of wheat,and the genetic basis of agronomically important traits,which promote the breeding of elite varieties.In this review,we focus on progress that has been made in genomic research and genetic improvement of traits such as grain yield,end-use traits,flowering regulation,nutrient use efficiency,and biotic and abiotic stress responses,and various breeding strategies that contributed mainly by Chinese scientists.Functional genomic research in wheat is entering a new era with the availability of multiple reference wheat genome assemblies and the development of cutting-edge technologies such as precise genome editing tools,highthroughput phenotyping platforms,sequencing-based cloning strategies,high-efficiency genetic transformation systems,and speed-breeding facilities.These insights will further extend our understanding of the molecular mechanisms and regulatory networks underlying agronomic traits and facilitate the breeding process,ultimately contributing to more sustainable agriculture in China and throughout the world.展开更多
基金supported by Key Project of Natural Science Foundation of Shandong(ZR202105200003)National Natural Science Foundation of China(31870242)National Transgene Project(2020ZX08009-11B,2016ZX08002002-003)。
文摘Salt and saline-alkaline stress seriously threaten crop production and food security worldwide(Yang and Guo,2018).Identifying genes that confer tolerance to these conditions without yield penalty would help mitigate this problem through molecular breeding(Liang et al.,2023;Sahu and Liu,2023).Although numerous stress-tolerance genes have been identified,their application potential in molecular breeding has rarely been confirmed through multi-year and multi-site field trials.
基金This work was supported by the National Natural Science Foundation of China(31788103,31970529,32125030,31921005,31961143013,32072660)the Key Research and Development Program of Ministry of Science and Technology of China(2021YFF1000200)the Strategic Priority Research Program of Chinese Academy of Sciences(XDA24010202).
文摘Bread wheat(Triticum aestivum L.)is a major crop that feeds 40%of the world’s population.Over the past several decades,advances in genomics have led to tremendous achievements in understanding the origin and domestication of wheat,and the genetic basis of agronomically important traits,which promote the breeding of elite varieties.In this review,we focus on progress that has been made in genomic research and genetic improvement of traits such as grain yield,end-use traits,flowering regulation,nutrient use efficiency,and biotic and abiotic stress responses,and various breeding strategies that contributed mainly by Chinese scientists.Functional genomic research in wheat is entering a new era with the availability of multiple reference wheat genome assemblies and the development of cutting-edge technologies such as precise genome editing tools,highthroughput phenotyping platforms,sequencing-based cloning strategies,high-efficiency genetic transformation systems,and speed-breeding facilities.These insights will further extend our understanding of the molecular mechanisms and regulatory networks underlying agronomic traits and facilitate the breeding process,ultimately contributing to more sustainable agriculture in China and throughout the world.