期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Layer thickness dependent plastic deformation mechanism in Ti/TiCu dual-phase nano-laminates 被引量:1
1
作者 安敏荣 雷岳峰 +5 位作者 宿梦嘉 刘兰亭 邓琼 宋海洋 尚玉 王晨 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第6期435-446,共12页
Crystalline/amorphous nanolaminate is an effective strategy to improve the mechanical properties of metallic materials,but the underlying deformation mechanism is still under the way of exploring.Here,the mechanical p... Crystalline/amorphous nanolaminate is an effective strategy to improve the mechanical properties of metallic materials,but the underlying deformation mechanism is still under the way of exploring.Here,the mechanical properties and plastic deformation mechanism of Ti/TiCu dual-phase nanolaminates(DPNLs)with different layer thicknesses are investigated using molecular dynamics simulations.The results indicate that the influence of the layer thickness on the plastic deformation mechanism in crystalline layer is negligible,while it affects the plastic deformation mechanism of amorphous layers distinctly.The crystallization of amorphous TiCu is exhibited in amorphous parts of the Ti/TiCu DPNLs,which is inversely proportional to the layer thickness.It is observed that the crystallization of the amorphous TiCu is a process driven by stress and heat.Young's moduli for the Ti/TiCu DPNLs are higher than those of composite material due to the amorphous/crystalline interfaces.Furthermore,the main plastic deformation mechanism in crystalline part:grain reorientation,transformation from hexagonal-close-packed-Ti to face-centered cubic-Ti and body-centered cubic-Ti,has also been displayed in the present work.The results may provide a guideline for design of high-performance Ti and its alloy. 展开更多
关键词 dual-phase nanolaminate molecular dynamics simulation deformation mechanism CRYSTALLIZATION
原文传递
Anisotropic plasticity of nanocrystalline Ti:A molecular dynamics simulation
2
作者 Minrong An mengjia su +3 位作者 Qiong Deng Haiyang Song Chen Wang Yu Shang 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第4期368-378,共11页
Using molecular dynamics simulations,the plastic deformation behavior of nanocrytalline Ti has been investigated under tension and compression normal to the{0001},{1010},and{1210}planes.The results indicate that the p... Using molecular dynamics simulations,the plastic deformation behavior of nanocrytalline Ti has been investigated under tension and compression normal to the{0001},{1010},and{1210}planes.The results indicate that the plastic deformation strongly depends on crystal orientation and loading directions.Under tension normal to basal plane,the deformation mechanism is mainly the grain reorientation and the subsequent deformation twinning.Under compression,the transformation of hexagonal-close packed(HCP)-Ti to face-centered cubic(FCC)-Ti dominates the deformation.When loading is normal to the prismatic planes(both{1010}and{1210}),the deformation mechanism is primarily the phase transformation among HCP,body-centered cubic(BCC),and FCC structures,regardless of loading mode.The orientation relations(OR)of{0001}HCP||{111}FCC and<1210>HCP||<110>FCC,and{1010}HCP||{110}FCC and<0001>HCP||<010>FCC between the HCP and FCC phases have been observed in the present work.For the transformation of HCP→BCC→HCP,the OR is{0001}α1||{110}β||{1010}α2(HCP phase before the critical strain is defined as α1-Ti,BCC phase is defined as β-Ti,and the HCP phase after the critical strain is defined as α2-Ti).Energy evolution during the various loading processes further shows the plastic anisotropy of nanocrystalline Ti is determined by the stacking order of the atoms.The results in the present work will promote the in-depth study of the plastic deformation mechanism of HCP materials. 展开更多
关键词 molecular dynamics simulation NANOCRYSTALLINE TI ANISOTROPIC PLASTICITY DEFORMATION mechanism
原文传递
Molecular dynamics study on mechanical behaviors of Ti/Ni nanolaminate with a pre-existing void
3
作者 mengjia su Qiong Deng +3 位作者 Lanting Liu Lianyang Chen He He Yinggang Miao 《Nano Materials Science》 EI CAS CSCD 2022年第2期113-125,共13页
Metallic nanolaminated materials possess excellent mechanical properties due to their unique modulation structures and interfacial properties.However,how microdefects affect their mechanical properties is still uncert... Metallic nanolaminated materials possess excellent mechanical properties due to their unique modulation structures and interfacial properties.However,how microdefects affect their mechanical properties is still uncertain.To evaluate the influences of void location(in the crystalline layer and the Ti/Ni interface),void diameter(d)and thickness of the intermediate layer(h)on overall tensile behaviors,various types of defective Ti/Ni nanolaminates with pre-existing void are established by the molecular dynamics method in this work.The results indicate that the strength and plastic deformation mechanisms are strongly dependent on those determinants.Yield stresses of Ti/Ni nanolaminates decrease distinctly with increasing void diameter,while peak stresses with a void in the crystalline layer decrease with increasing d/h.Different void locations lead eventually to disparate initial plastic deformation carriers around the void,and various evolutions in the microstructure of the defective Ti/Ni nanolaminates.The Ti/Ni interface plays a significant role in the tensile process.The semi-coherent interface impedes new grains and lattice dislocations from passing across the interface,while the incoherent interface facilitates dislocations generating and sliding along the interface,and absorbs the dislocations moving to the interface.The results also indicate that the strain rate significantly affects the evolution of the microstructure and the tensile properties of defective Ti/Ni nanolaminates. 展开更多
关键词 Defective Ti/Ni nanolaminate Pre-existing void INTERFACE Tensile behaviors Molecular dynamics
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部