Proactive Semantic Interference (PSI) and failure to recover from PSI (frPSI), are novel constructs assessed by the LASSI-L. These measures are sensitive to cognitive changes in early Mild Cognitive Impairment (MCI) a...Proactive Semantic Interference (PSI) and failure to recover from PSI (frPSI), are novel constructs assessed by the LASSI-L. These measures are sensitive to cognitive changes in early Mild Cognitive Impairment (MCI) and preclinical AD determined by Aβ load using PET. The goal of this study was to compare a new computerized version of the LASSI-L (LASSI-Brief Computerized) to the standard paper-and-pencil version of the test. In this study, we examined 110 cognitively unimpaired (CU) older adults and 79 with amnestic MCI (aMCI) who were administered the paper-and-pencil form of the LASSI-L. Their performance was compared with 62 CU older adults and 52 aMCI participants examined using the LASSI-BC. After adjustment for covariates (degree of initial learning, sex, education, and language of evaluation) both the standard and computerized versions distinguished between aMCI and CU participants. The performance of CU and aMCI groups using either form was relatively commensurate. Importantly, an optimal combination of Cued B2 recall and Cued B1 intrusions on the LASSI-BC yielded an area under the ROC curve of .927, a sensitivity of 92.3% and specificity of 88.1%, relative to an area under the ROC curve of .815, a sensitivity of 72.5%, and a specificity of 79.1% obtained for the paper-and-pencil LASSI-L. Overall, the LASSI-BC was comparable, and in some ways, superior to the paper-and-pencil LASSI-L. Advantages of the LASSI-BC include a more standardized administration, suitability for remote assessment, and an automated scoring mechanism that can be verified by a built-in audio recording of responses.展开更多
During the prodromal stage of Alzheimer’s disease (AD), neurodegenerative changes can be identified by measuring volumetric loss in AD-prone brain regions on MRI. Cognitive assessments that are sensitive enough to me...During the prodromal stage of Alzheimer’s disease (AD), neurodegenerative changes can be identified by measuring volumetric loss in AD-prone brain regions on MRI. Cognitive assessments that are sensitive enough to measure the early brain-behavior manifestations of AD and that correlate with biomarkers of neurodegeneration are needed to identify and monitor individuals at risk for dementia. Weak sensitivity to early cognitive change has been a major limitation of traditional cognitive assessments. In this study, we focused on expanding our previous work by determining whether a digitized cognitive stress test, the Loewenstein-Acevedo Scales for Semantic Interference and Learning, Brief Computerized Version (LASSI-BC) could differentiate between Cognitively Unimpaired (CU) and amnestic Mild Cognitive Impairment (aMCI) groups. A second focus was to correlate LASSI-BC performance to volumetric reductions in AD-prone brain regions. Data was gathered from 111 older adults who were comprehensively evaluated and administered the LASSI-BC. Eighty-seven of these participants (51 CU;36 aMCI) underwent MR imaging. The volumes of 12 AD-prone brain regions were related to LASSI-BC and other memory tests correcting for False Discovery Rate (FDR). Results indicated that, even after adjusting for initial learning ability, the failure to recover from proactive semantic interference (frPSI) on the LASSI-BC differentiated between CU and aMCI groups. An optimal combination of frPSI and initial learning strength on the LASSI-BC yielded an area under the ROC curve of 0.876 (76.1% sensitivity, 82.7% specificity). Further, frPSI on the LASSI-BC was associated with volumetric reductions in the hippocampus, amygdala, inferior temporal lobes, precuneus, and posterior cingulate.展开更多
文摘Proactive Semantic Interference (PSI) and failure to recover from PSI (frPSI), are novel constructs assessed by the LASSI-L. These measures are sensitive to cognitive changes in early Mild Cognitive Impairment (MCI) and preclinical AD determined by Aβ load using PET. The goal of this study was to compare a new computerized version of the LASSI-L (LASSI-Brief Computerized) to the standard paper-and-pencil version of the test. In this study, we examined 110 cognitively unimpaired (CU) older adults and 79 with amnestic MCI (aMCI) who were administered the paper-and-pencil form of the LASSI-L. Their performance was compared with 62 CU older adults and 52 aMCI participants examined using the LASSI-BC. After adjustment for covariates (degree of initial learning, sex, education, and language of evaluation) both the standard and computerized versions distinguished between aMCI and CU participants. The performance of CU and aMCI groups using either form was relatively commensurate. Importantly, an optimal combination of Cued B2 recall and Cued B1 intrusions on the LASSI-BC yielded an area under the ROC curve of .927, a sensitivity of 92.3% and specificity of 88.1%, relative to an area under the ROC curve of .815, a sensitivity of 72.5%, and a specificity of 79.1% obtained for the paper-and-pencil LASSI-L. Overall, the LASSI-BC was comparable, and in some ways, superior to the paper-and-pencil LASSI-L. Advantages of the LASSI-BC include a more standardized administration, suitability for remote assessment, and an automated scoring mechanism that can be verified by a built-in audio recording of responses.
文摘During the prodromal stage of Alzheimer’s disease (AD), neurodegenerative changes can be identified by measuring volumetric loss in AD-prone brain regions on MRI. Cognitive assessments that are sensitive enough to measure the early brain-behavior manifestations of AD and that correlate with biomarkers of neurodegeneration are needed to identify and monitor individuals at risk for dementia. Weak sensitivity to early cognitive change has been a major limitation of traditional cognitive assessments. In this study, we focused on expanding our previous work by determining whether a digitized cognitive stress test, the Loewenstein-Acevedo Scales for Semantic Interference and Learning, Brief Computerized Version (LASSI-BC) could differentiate between Cognitively Unimpaired (CU) and amnestic Mild Cognitive Impairment (aMCI) groups. A second focus was to correlate LASSI-BC performance to volumetric reductions in AD-prone brain regions. Data was gathered from 111 older adults who were comprehensively evaluated and administered the LASSI-BC. Eighty-seven of these participants (51 CU;36 aMCI) underwent MR imaging. The volumes of 12 AD-prone brain regions were related to LASSI-BC and other memory tests correcting for False Discovery Rate (FDR). Results indicated that, even after adjusting for initial learning ability, the failure to recover from proactive semantic interference (frPSI) on the LASSI-BC differentiated between CU and aMCI groups. An optimal combination of frPSI and initial learning strength on the LASSI-BC yielded an area under the ROC curve of 0.876 (76.1% sensitivity, 82.7% specificity). Further, frPSI on the LASSI-BC was associated with volumetric reductions in the hippocampus, amygdala, inferior temporal lobes, precuneus, and posterior cingulate.