The efficient harvesting of triplet excitons is crucial to the realization of high-performance organic light-emitting diodes(OLEDs).Herein,we show that coordination of donor-acceptor(D-A)type molecules to a metal atom...The efficient harvesting of triplet excitons is crucial to the realization of high-performance organic light-emitting diodes(OLEDs).Herein,we show that coordination of donor-acceptor(D-A)type molecules to a metal atom in a monodentate fashion can lead to thermally activated delayed fluorescence(TADF)emissions with wide color tunability only through varying the noncoordinating acceptor moiety.A panel of TADF gold(Ⅰ)complexes with emission maxima(λmax)of 545–645 nm from metal perturbed intraligand charge-transfer(MPICT)excited states have been developed.Synergetic effects of heavy atom-induced spin-orbit coupling(SOC),steric-induced donor-acceptor twisting and suppressed intramolecular motions lead to high emission efficiencies of 65%-85%in doped films with delayed fluorescence lifetime of as short as 2.0μs.Transient absorption spectroscopic studies on selected complexes determined the kISCto be 6.5×10^(9)s^(-1).Theoretical calculations confirmed the participation of minor d orbital into the lowest excited state,which led to an SOC value of 5.19 cm^(-1)between the lowest-lying singlet and triplet excited states.The yellow to deep red solution-processed OLEDs based on the new gold(Ⅰ)complexes incorporated with various D-A ligands demonstrated promising performances.This study validates a modular design for TADF metal complexes,which will broaden the choices of metal centers and allow for facile color tuning via simple ligand synthesis.展开更多
The development of circularly polarized luminescence(CPL)materials with high performance is signifi-cantly important.Herein,we develop a facial strategy for fabricating a CPL-active system by employing an achiral lumi...The development of circularly polarized luminescence(CPL)materials with high performance is signifi-cantly important.Herein,we develop a facial strategy for fabricating a CPL-active system by employing an achiral luminescent metal-organic cage(MOC)and chiral boron dipyrromethene(BODIPY)molecules.CPL is achieved by taking advantage of the radiative energy transfer process,in which BODIPY molecules act as energy acceptors and MOCs act as donors.The CPL performance(maximum luminescence dissymme-try factor up to±1.5×10^(−3))can be tuned by adjusting the ratio between MOCs and BODIPY.White-light emission with the CPL feature is obtained by using a ternary system including MOC,chiral BODIPY,and Rhodamine B.The present work provides a facile and universal strategy to construct a CPL-active system by integrating achiral luminophores and chiral molecules.展开更多
Herein,we report the facile synthesis of a highly strained hexabenzocoronene-containing carbon nanoring,cyclo[4]-paraphenylene[2]-2,11-hexabenzocoronenylene([4,2]CPHBC),as the segment of a[10,10]single-walled carbon n...Herein,we report the facile synthesis of a highly strained hexabenzocoronene-containing carbon nanoring,cyclo[4]-paraphenylene[2]-2,11-hexabenzocoronenylene([4,2]CPHBC),as the segment of a[10,10]single-walled carbon nanotube([10,10]SWNT).[4,2]CPHBC was synthesized based on the platinummediated assembly of diborylbiphenyl and diborylhexabenzocoronene,forming a tetranuclear platinum complex,followed by reductive elimination.This nanoring molecule was confirmed by NMR and HRMS,and its photophysical properties were studied using steady-state and time-resolved spectroscopies.Moreover,the selective supramolecular host-guest interaction between[4,2]CPHBC and C_(60) was also investigated.展开更多
Holographic polymer/liquid-crystal composites,which are periodically ordered materials with alternative polymer-rich and liquid-crystal-rich phases, have drawn increasing interest due to their unique capabilities of r...Holographic polymer/liquid-crystal composites,which are periodically ordered materials with alternative polymer-rich and liquid-crystal-rich phases, have drawn increasing interest due to their unique capabilities of reconstructing colored three-dimensional(3 D) images and enabling the electro-optic response. They are formed via photopolymerization induced phase separation upon exposure to laser interference patterns, where a fast photopolymerization is required to facilitate the holographic patterning. Yet, the fast photopolymerization generally leads to depressed phase separation and it remains challenging to boost the holographic performance via kinetics control.Herein, we disclose that the ketyl radical inhibition is able to significantly boost the phase separation and holographic performance by preventing the proliferated diffusion of initiating radicals from the constructive to the destructive regions. Dramatically depressed phase separation is caused when converting the inhibiting ketyl radical to a new initiating radical, indicating the significance of ketyl radical inhibition when designing high performance holographic polymer composites.展开更多
Conductive coordination polymers(CCPs)have shown great potential for electronic purposes.However,their applications in photodetection have been limited by poor sensitivity,low on/off current ratio,and slow response ow...Conductive coordination polymers(CCPs)have shown great potential for electronic purposes.However,their applications in photodetection have been limited by poor sensitivity,low on/off current ratio,and slow response owing to the low charge generation and/or separation efficiency.In this work,metal-to-ligand chargetransfer(MLCT)in PhSeAg was used to fabricate a single-component MLCT photodetecting material for the first time to solve the above challenges.The material obtained possesses ultrahigh sensitivity to weak-light intensity(0.03 mW cm^(−2)),the highest on/off ratio,and the fastest response speed than other wellknown CCPs materials tested.Our work might provide a simple but common strategy for designing high-performance CCPs composites for optoelectrical applications.展开更多
基金supported by the National Natural Science Foundation of China(22322505,22271196,22301226)the Shenzhen Science and Technology Program(ZDSYS20210623091813040)support from the Department of Science and Technology of Guangdong Province(2019QN01C617)。
文摘The efficient harvesting of triplet excitons is crucial to the realization of high-performance organic light-emitting diodes(OLEDs).Herein,we show that coordination of donor-acceptor(D-A)type molecules to a metal atom in a monodentate fashion can lead to thermally activated delayed fluorescence(TADF)emissions with wide color tunability only through varying the noncoordinating acceptor moiety.A panel of TADF gold(Ⅰ)complexes with emission maxima(λmax)of 545–645 nm from metal perturbed intraligand charge-transfer(MPICT)excited states have been developed.Synergetic effects of heavy atom-induced spin-orbit coupling(SOC),steric-induced donor-acceptor twisting and suppressed intramolecular motions lead to high emission efficiencies of 65%-85%in doped films with delayed fluorescence lifetime of as short as 2.0μs.Transient absorption spectroscopic studies on selected complexes determined the kISCto be 6.5×10^(9)s^(-1).Theoretical calculations confirmed the participation of minor d orbital into the lowest excited state,which led to an SOC value of 5.19 cm^(-1)between the lowest-lying singlet and triplet excited states.The yellow to deep red solution-processed OLEDs based on the new gold(Ⅰ)complexes incorporated with various D-A ligands demonstrated promising performances.This study validates a modular design for TADF metal complexes,which will broaden the choices of metal centers and allow for facile color tuning via simple ligand synthesis.
基金financially supported by the National Natural Science Foundation of China (Nos.22171106,21731002,21975104,21871172,and 22201101)the Guangdong Major Project of Basic and Applied Research (No.2019B030302009)+4 种基金Guangdong Natural Science Foundation (No.2022A1515011937)the Guangzhou Science and Technology Program (No.202002030411)the China Postdoctoral Science Foundation (No.2022M711327)Guangdong Basic and Applied Basic Research Foundation (No.2022A1515110523)Jinan University
文摘The development of circularly polarized luminescence(CPL)materials with high performance is signifi-cantly important.Herein,we develop a facial strategy for fabricating a CPL-active system by employing an achiral luminescent metal-organic cage(MOC)and chiral boron dipyrromethene(BODIPY)molecules.CPL is achieved by taking advantage of the radiative energy transfer process,in which BODIPY molecules act as energy acceptors and MOCs act as donors.The CPL performance(maximum luminescence dissymme-try factor up to±1.5×10^(−3))can be tuned by adjusting the ratio between MOCs and BODIPY.White-light emission with the CPL feature is obtained by using a ternary system including MOC,chiral BODIPY,and Rhodamine B.The present work provides a facile and universal strategy to construct a CPL-active system by integrating achiral luminophores and chiral molecules.
基金financially supported by the National Natural Science Foundation of China(Nos.22225108,21971229).
文摘Herein,we report the facile synthesis of a highly strained hexabenzocoronene-containing carbon nanoring,cyclo[4]-paraphenylene[2]-2,11-hexabenzocoronenylene([4,2]CPHBC),as the segment of a[10,10]single-walled carbon nanotube([10,10]SWNT).[4,2]CPHBC was synthesized based on the platinummediated assembly of diborylbiphenyl and diborylhexabenzocoronene,forming a tetranuclear platinum complex,followed by reductive elimination.This nanoring molecule was confirmed by NMR and HRMS,and its photophysical properties were studied using steady-state and time-resolved spectroscopies.Moreover,the selective supramolecular host-guest interaction between[4,2]CPHBC and C_(60) was also investigated.
基金financial supports from the National Natural Science Foundation of China (51433002 and 51773073)HUST peak boarding program+1 种基金the National Science Foundation (NSF) of Hubei Scientific Committee (2016CFA001)the Fundamental Research Funds for the Central Universities (2019kfy RCPY089)
文摘Holographic polymer/liquid-crystal composites,which are periodically ordered materials with alternative polymer-rich and liquid-crystal-rich phases, have drawn increasing interest due to their unique capabilities of reconstructing colored three-dimensional(3 D) images and enabling the electro-optic response. They are formed via photopolymerization induced phase separation upon exposure to laser interference patterns, where a fast photopolymerization is required to facilitate the holographic patterning. Yet, the fast photopolymerization generally leads to depressed phase separation and it remains challenging to boost the holographic performance via kinetics control.Herein, we disclose that the ketyl radical inhibition is able to significantly boost the phase separation and holographic performance by preventing the proliferated diffusion of initiating radicals from the constructive to the destructive regions. Dramatically depressed phase separation is caused when converting the inhibiting ketyl radical to a new initiating radical, indicating the significance of ketyl radical inhibition when designing high performance holographic polymer composites.
基金This work was supported by the NSF of China(21822109,21805276,21773245,21773151,21975254)National Key R&D Program of China(2017YFA0206802)+2 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(XDB20000000)Key Research Program of Frontier Science,Chinese Academy of Sciences(QYZDB-SSW-SLH023)Youth Innovation Promotion Association CAS,International Partnership Program of CAS(121835KYSB201800).
文摘Conductive coordination polymers(CCPs)have shown great potential for electronic purposes.However,their applications in photodetection have been limited by poor sensitivity,low on/off current ratio,and slow response owing to the low charge generation and/or separation efficiency.In this work,metal-to-ligand chargetransfer(MLCT)in PhSeAg was used to fabricate a single-component MLCT photodetecting material for the first time to solve the above challenges.The material obtained possesses ultrahigh sensitivity to weak-light intensity(0.03 mW cm^(−2)),the highest on/off ratio,and the fastest response speed than other wellknown CCPs materials tested.Our work might provide a simple but common strategy for designing high-performance CCPs composites for optoelectrical applications.