The chemical activation of various precursors is effective for creating additional closed pores in hard carbons for sodium storage.However,the formation mechanism of closed pores under the influence of pore-forming ag...The chemical activation of various precursors is effective for creating additional closed pores in hard carbons for sodium storage.However,the formation mechanism of closed pores under the influence of pore-forming agents is not well understood.Herein,an effective chemical activation followed by a high-temperature self-healing strategy is employed to generate interconnected closed pores in lignin-derived hard carbon(HCs).By systematic experimental design combined with electron paramagnetic res-onance spectroscopy,it can be found that the content of free radicals in the carbon matrix influences the closure of open pores at high temperatures.Excessively high activation temperature(>700 C)leads to a low free radical concentration,making it difficult to achieve self-healing of open pores at high tempera-tures.By activation at 700°C,a balance between pore making and self-healing is achieved in the final hard carbon.A large number of free radicals triggers rapid growth and aggregation of carbon microcrys-tals,blocking pre-formed open micropores and creating additional interconnected closed pores in as-obtained hard carbons.As a result,the optimized carbon anode(LK-700-1300)delivers a high reversible capacity of 330.8 mA h g^(-1) at 0.03 A g^(-1),which is an increase of 86 mA h g^(-1) compared to the pristine lignin-derived carbon anode(L-700-1300),and exhibits a good rate performance(202.1 mA h g^(-1) at 1 A g^(-1)).This work provides a universal and effective guidance for tuning closed pores of hard carbons from otherprecursors.展开更多
Starch,as a typical polysaccharide with natural spherical morphology,is not only a preferred precursor for preparing carbon materials but also a model polymer for investigating thermochemical evolution mechanisms.Howe...Starch,as a typical polysaccharide with natural spherical morphology,is not only a preferred precursor for preparing carbon materials but also a model polymer for investigating thermochemical evolution mechanisms.However,starch usually suffers from severe foaming and low carbon yield during direct pyrolysis.Herein,we report a simple and eco-friendly dry strategy,by maleic anhydride initiating the esterification of starch,to design carbon microspheres against the starch foaming.Moreover,the infuence of ester grafting on the pyrolytic behavior of starch is also focused.The formation of ester groups in precursor guarantees the structural stability of starch-based intermediate because it can promote the accumulation of unsaturated species and accelerate the water elimination during pyrolysis.Meanwhile,the esterification and dehydration reactions greatly deplete the primary hydroxyl groups in the starch molecules and thus the rapid levoglucosan release is inhibited,which well keeps the spherical morphology of starch and ensures the high carbon yield.In further exploration as anode materials for Lithium-ion batteries,the obtained carbon microspheres exhibit good cyclability and rate performance with a reversible capacity of 444 m Ah g^(-1)at 50 m A g^(-1).This work provides theoretical fundamentals for the controllable thermal transformation of biomass towards wide applications.展开更多
Hard carbons are widely investigated as potential anodes for lithium and sodium ion batteries owing to their internally well-tailored textures(closed pores and defects) and large microcrystalline interlayer spacing. T...Hard carbons are widely investigated as potential anodes for lithium and sodium ion batteries owing to their internally well-tailored textures(closed pores and defects) and large microcrystalline interlayer spacing. The renewable biomass is a green and economically attractive carbon source to produce hard carbons. However, the chemical and structural complexity of biomass has plagued the understanding of evolution mechanism from organic precursors to hard carbons and the structure-property relationship.This makes it difficult to finely tune the microstructure of biomass-derived hard carbons, thus greatly restricting their high-performance applications. Most recently, the optimal utilization and controllable conversion of biomass-derived biopolymers(such as starch, cellulose and lignin) at the molecular level have become a burgeoning area of research to develop hard carbons for advanced batteries.Considering the principal source of carbonaceous materials is from biomass pyrolysis, we firstly overview the chemical structures and pyrolysis behaviors of three main biopolymers. Then, the controllable preparation of hard carbons using various physicochemical properties of biopolymers at the molecular level is systematically discussed. Furthermore, we highlight present challenges and further opportunities in this field. The Review will guide future research works on the design of sustainable hard carbons and the optimization of battery performance.展开更多
基金supported by the National Natural Science Foundation of China (22379157,22179139)the Key Research and Development (R&D) Projects of Shanxi Province(202102040201003)+1 种基金the Research Program of Shanxi Province(202203021211203)the ICC CAS (SCJC-XCL-2023-10 and SCJC-XCL-2023-13)
文摘The chemical activation of various precursors is effective for creating additional closed pores in hard carbons for sodium storage.However,the formation mechanism of closed pores under the influence of pore-forming agents is not well understood.Herein,an effective chemical activation followed by a high-temperature self-healing strategy is employed to generate interconnected closed pores in lignin-derived hard carbon(HCs).By systematic experimental design combined with electron paramagnetic res-onance spectroscopy,it can be found that the content of free radicals in the carbon matrix influences the closure of open pores at high temperatures.Excessively high activation temperature(>700 C)leads to a low free radical concentration,making it difficult to achieve self-healing of open pores at high tempera-tures.By activation at 700°C,a balance between pore making and self-healing is achieved in the final hard carbon.A large number of free radicals triggers rapid growth and aggregation of carbon microcrys-tals,blocking pre-formed open micropores and creating additional interconnected closed pores in as-obtained hard carbons.As a result,the optimized carbon anode(LK-700-1300)delivers a high reversible capacity of 330.8 mA h g^(-1) at 0.03 A g^(-1),which is an increase of 86 mA h g^(-1) compared to the pristine lignin-derived carbon anode(L-700-1300),and exhibits a good rate performance(202.1 mA h g^(-1) at 1 A g^(-1)).This work provides a universal and effective guidance for tuning closed pores of hard carbons from otherprecursors.
基金supported by the National Science Foundation for Excellent Young Scholars of China(21922815)the Key Research and Development(R&D)Projects of Shanxi Province(201903D121180)the National Key Research and Development(R&D)Program of China。
文摘Starch,as a typical polysaccharide with natural spherical morphology,is not only a preferred precursor for preparing carbon materials but also a model polymer for investigating thermochemical evolution mechanisms.However,starch usually suffers from severe foaming and low carbon yield during direct pyrolysis.Herein,we report a simple and eco-friendly dry strategy,by maleic anhydride initiating the esterification of starch,to design carbon microspheres against the starch foaming.Moreover,the infuence of ester grafting on the pyrolytic behavior of starch is also focused.The formation of ester groups in precursor guarantees the structural stability of starch-based intermediate because it can promote the accumulation of unsaturated species and accelerate the water elimination during pyrolysis.Meanwhile,the esterification and dehydration reactions greatly deplete the primary hydroxyl groups in the starch molecules and thus the rapid levoglucosan release is inhibited,which well keeps the spherical morphology of starch and ensures the high carbon yield.In further exploration as anode materials for Lithium-ion batteries,the obtained carbon microspheres exhibit good cyclability and rate performance with a reversible capacity of 444 m Ah g^(-1)at 50 m A g^(-1).This work provides theoretical fundamentals for the controllable thermal transformation of biomass towards wide applications.
基金the support of this work by the Fundamental Research Program of Shanxi Province(20210302123008,20210302124101)the Youth Innovation Promotion Association of CAS(2019178)+1 种基金the National Science Foundation for Excellent Young Scholars of China(21922815)the National Natural Science Foundation of China(21975275,22179139)。
文摘Hard carbons are widely investigated as potential anodes for lithium and sodium ion batteries owing to their internally well-tailored textures(closed pores and defects) and large microcrystalline interlayer spacing. The renewable biomass is a green and economically attractive carbon source to produce hard carbons. However, the chemical and structural complexity of biomass has plagued the understanding of evolution mechanism from organic precursors to hard carbons and the structure-property relationship.This makes it difficult to finely tune the microstructure of biomass-derived hard carbons, thus greatly restricting their high-performance applications. Most recently, the optimal utilization and controllable conversion of biomass-derived biopolymers(such as starch, cellulose and lignin) at the molecular level have become a burgeoning area of research to develop hard carbons for advanced batteries.Considering the principal source of carbonaceous materials is from biomass pyrolysis, we firstly overview the chemical structures and pyrolysis behaviors of three main biopolymers. Then, the controllable preparation of hard carbons using various physicochemical properties of biopolymers at the molecular level is systematically discussed. Furthermore, we highlight present challenges and further opportunities in this field. The Review will guide future research works on the design of sustainable hard carbons and the optimization of battery performance.