期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
氧化石墨烯的尺寸对碳纤维/环氧树脂湿热界面性能的影响 被引量:3
1
作者 任明伟 自雅娴 +5 位作者 张莹 周玉敬 邱虹 刘刚 白华 胡晓兰 《材料工程》 EI CAS CSCD 北大核心 2023年第9期208-216,共9页
通过Hummers法获得两种尺寸的氧化石墨烯(GO),利用模压成型制备GO改性碳纤维增强环氧树脂复合材料(GO/CF/EP),并对复合材料进行湿热处理,利用层间剪切性能、动态热机械性能和微观形貌分析室温干态和湿热处理后复合材料的改性效果。结果... 通过Hummers法获得两种尺寸的氧化石墨烯(GO),利用模压成型制备GO改性碳纤维增强环氧树脂复合材料(GO/CF/EP),并对复合材料进行湿热处理,利用层间剪切性能、动态热机械性能和微观形貌分析室温干态和湿热处理后复合材料的改性效果。结果表明:GO对复合材料的层间剪切强度和玻璃化转变温度均具有良好的改善作用;室温干态时两种尺寸GO对复合材料层间剪切强度的改善效果基本相同;随GO含量增加,小尺寸GO使复合材料的湿热层间剪切强度下降更快,GO含量为0.1%(质量分数,下同)时对复合材料的层间剪切性能改善作用较好,而GO含量为0.2%时对复合材料的玻璃化转变温度改善更好。随GO含量增加,GO-EP复合树脂基体的放热峰向低温移动,小尺寸GO使复合树脂的凝胶时间变短。微观形貌分析表明,GO的存在有利于增加复合材料破坏时的裂纹扩散路径,从而更有助于材料耗散裂纹尖端能量。 展开更多
关键词 氧化石墨烯 碳纤维 环氧树脂 界面性能
下载PDF
A Biproportional Construction Algorithm for Correctly Calculating Fourier Series of Aperiodic Non-Sinusoidal Signal
2
作者 Zicheng Li mingwei ren +1 位作者 Zhaoling Chen Guohai Liu 《Engineering(科研)》 2021年第10期503-525,共23页
<span style="font-family:Verdana;">The </span><span style="font-family:Verdana;">Fourier series</span><span style="font-family:Verdana;"> (FS)</span>&l... <span style="font-family:Verdana;">The </span><span style="font-family:Verdana;">Fourier series</span><span style="font-family:Verdana;"> (FS)</span><span style="font-family:Verdana;"> applies to </span><span style="font-family:Verdana;">a </span><span style="font-family:Verdana;">periodic non-sinusoidal function</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">satisfying </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">Dirichlet conditions, whereas </span><span style="font-family:Verdana;">the</span><span style="font-family:Verdana;"> being-processed function</span><span style="font-family:;" "=""> <img src="Edit_5f802cf4-e7c1-43f0-9bf6-97cfac22ce08.png" alt="" style="white-space:normal;" /></span><span style="font-family:;" "=""></span><span style="font-family:;" "=""><span style="font-family:Verdana;"> in practical applications is usually an aperiodic non-sinusoidal signal. When </span><img src="Edit_5f802cf4-e7c1-43f0-9bf6-97cfac22ce08.png" alt="" /><span style="font-family:Verdana;"> is aperiodic, its calculated </span></span><span style="font-family:Verdana;">FS</span><span style="font-family:Verdana;"> is not correct, </span><span style="font-family:Verdana;">which is </span><span style="font-family:Verdana;">still a challenging problem. To overcome the problem, </span><span style="font-family:Verdana;">we</span><span style="font-family:Verdana;"> derive a direct calculation algorithm, a constant iterati</span><span style="font-family:Verdana;">on </span><span style="font-family:Verdana;">algorithm, and an optimal iterati</span><span style="font-family:Verdana;">on </span><span style="font-family:Verdana;">algorithm. The direct calculation algorithm correctly calculate</span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> its Fourier coefficients </span><span style="font-family:Verdana;">(FCs) </span><span style="font-family:;" "=""><span style="font-family:Verdana;">when </span><img src="Edit_5f802cf4-e7c1-43f0-9bf6-97cfac22ce08.png" alt="" style="white-space:normal;" /><span></span><span style="font-family:Verdana;"> is periodic</span></span><span style="font-family:Verdana;"> and </span><span style="font-family:Verdana;">satisf</span><span style="font-family:Verdana;">ies</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">Dirichlet conditions</span><span style="font-family:Verdana;">.</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">B</span><span style="font-family:Verdana;">oth the constant iterati</span><span style="font-family:Verdana;">on</span><span style="font-family:Verdana;"> algorithm and the optimal</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">iterati</span><span style="font-family:Verdana;">on</span><span style="font-family:Verdana;"> algorithm provide </span><span style="font-family:Verdana;">an</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">idea</span><span style="font-family:;" "=""><span style="font-family:Verdana;"> of</span><span style="color:red;"> </span><span style="font-family:Verdana;">determining </span></span><span style="font-family:Verdana;">the </span><span style="font-family:;" "=""><span style="font-family:Verdana;">states of </span><img src="Edit_5f802cf4-e7c1-43f0-9bf6-97cfac22ce08.png" alt="" style="white-space:normal;" /><span></span></span><span style="font-family:Verdana;">.</span><span style="font-family:Verdana;"> From the </span><span style="font-family:Verdana;">idea</span><span style="font-family:Verdana;">, </span><span style="font-family:Verdana;">we obtain </span><span style="font-family:Verdana;">an algorithm for determining </span><span style="font-family:Verdana;">the </span><span style="font-family:;" "=""><span style="font-family:Verdana;">states of </span><img src="Edit_5f802cf4-e7c1-43f0-9bf6-97cfac22ce08.png" alt="" style="white-space:normal;" /><span></span><span style="font-family:Verdana;"> based on the optimal iterati</span></span><span style="font-family:Verdana;">on</span><span style="font-family:Verdana;"> algorithm. In the algorithm, </span><span style="font-family:Verdana;">the</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">variable</span><span style="font-family:Verdana;"> iterati</span><span style="font-family:Verdana;">on</span><span style="font-family:Verdana;"> step </span><span style="font-family:Verdana;">is</span><span style="font-family:Verdana;"> introduced</span><span style="font-family:Verdana;">;</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">t</span><span style="font-family:Verdana;">hus</span><span style="font-family:Verdana;">,</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">we present </span><span style="font-family:Verdana;">an algorithm for determining </span><span style="font-family:Verdana;">the </span><span style="font-family:;" "=""><span style="font-family:Verdana;">states of </span><img src="Edit_5f802cf4-e7c1-43f0-9bf6-97cfac22ce08.png" alt="" style="white-space:normal;" /><span></span><span style="font-family:Verdana;"> based on the </span></span><span style="font-family:Verdana;">variable</span><span style="font-family:Verdana;"> iterati</span><span style="font-family:Verdana;">on</span><span style="font-family:Verdana;"> step. </span><span style="font-family:Verdana;">The presented</span><span style="font-family:Verdana;"> algorithm accurately determine</span><span style="font-family:Verdana;">s</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">the </span><span style="font-family:;" "=""><span style="font-family:Verdana;">states of </span><img src="Edit_5f802cf4-e7c1-43f0-9bf6-97cfac22ce08.png" alt="" style="white-space:normal;" /><span></span></span><span style="font-family:Verdana;">. </span><span style="font-family:Verdana;">On the basis of the</span><span style="font-family:Verdana;">se</span><span style="font-family:Verdana;"> algorithms, </span><span style="font-family:Verdana;">we build </span><span style="font-family:Verdana;">a biproportional construction theory</span><span style="font-family:Verdana;">.</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">The </span><span style="font-family:Verdana;">theory</span><span style="font-family:Verdana;"> consists of a </span><span style="font-family:Verdana;">first </span><span style="font-family:Verdana;">and a second</span><span style="font-family:Verdana;"> proportional construction theory</span><span style="font-family:Verdana;">.</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">The</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">former</span><span style="font-family:Verdana;"> correctly </span><span style="font-family:Verdana;">calcula</span><span style="font-family:Verdana;">te</span><span style="font-family:Verdana;">s</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">the</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">FCs</span><span style="font-family:;" "=""><span style="font-family:Verdana;"> of </span><img src="Edit_5f802cf4-e7c1-43f0-9bf6-97cfac22ce08.png" alt="" style="white-space:normal;" /><span></span><span style="font-family:Verdana;"> at </span></span><span style="font-family:Verdana;">the present</span><span style="font-family:Verdana;"> samp</span><span style="font-family:Verdana;">ling time</span> 展开更多
关键词 Fourier Coefficients (FCs) Fourier Series (FS) Iteration Algorithm Aperiodic Non-Sinusoidal Signal
下载PDF
碳纤维表面生长聚合物微球同时提高界面强度和韧性 被引量:2
3
作者 蒋兴宇 王正 +4 位作者 刘慧敏 钟美华 刘莲英 任明伟 杨万泰 《高分子材料科学与工程》 EI CAS CSCD 北大核心 2021年第1期16-23,共8页
碳纤维(CF)增强聚合物基复合材料(CFRPC)的界面性能是影响其性能和使用的关键因素,提高界面黏附强度常带来界面韧性损失。文中提出在CF表面进行点击分散聚合,原位生长功能聚合物粒子,同时提高CF-环氧复合材料界面强度和韧性。首先利用... 碳纤维(CF)增强聚合物基复合材料(CFRPC)的界面性能是影响其性能和使用的关键因素,提高界面黏附强度常带来界面韧性损失。文中提出在CF表面进行点击分散聚合,原位生长功能聚合物粒子,同时提高CF-环氧复合材料界面强度和韧性。首先利用多巴胺(DA)对CF进行预处理,然后借助CF表面PDA,室温下进行巯基(-SH)-环氧(-Epoxy)在异丙醇或巯基(-SH)-异氰酸酯(-NCO)在乙醇中的原位点击分散聚合。扫描电镜(SEM)观察到,随单体用量增加,CF表面生长聚合物粒子增大、增多;红外光谱分析表明,使用等摩尔、高浓度单体,或使用过量-SH或-NCO单体,所得CF表面粒子含有残留-SH或-NCO基团,并可进一步功能化;动态接触角测试表明,单体用量增加,CF表面长出的聚合物粒子增多,表面接触角下降,表面能上升;微滴脱黏测试和SEM断面观察证实,长有粒子的CF与环氧基材的界面剪切强度和断裂韧性同时提高。 展开更多
关键词 碳纤维 点击分散聚合 聚合物微球 界面强度 界面韧性
下载PDF
Stability analysis for discrete linear systems with state saturation by a saturation-dependent Lyapunov functional 被引量:2
4
作者 Xiaofu JI mingwei ren +1 位作者 Hongye SU Jinfeng GAO 《控制理论与应用(英文版)》 EI 2012年第4期539-542,共4页
This paper concerns the stability analysis problem of discrete linear systems with state saturation using a saturation-dependent Lyapunov functional. We introduce a free matrix characterized by the sum of the absolute... This paper concerns the stability analysis problem of discrete linear systems with state saturation using a saturation-dependent Lyapunov functional. We introduce a free matrix characterized by the sum of the absolute value of each elements for each row less than 1, which makes the state with saturation constraint reside in a convex polyhedron. A saturation-dependent Lyapunov functional is then designed to obtain a sufficient condition for such systems to be globally asymptotically stable. Based on this stability criterion, the state feedback control law synthesis problem is also studied. The obtained results are formulated in terms of bilinear matrix inequalities that can be solved by the presented iterative linear matrix ineoualitv algorithm. Two numerical examoles are used to demonstrate the effectiveness of the nronosed method_ 展开更多
关键词 Discrete linear systems State saturation Saturation-dependent Iterative linear matrix inequality
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部