Anti-inflammatory compounds,delivered as a payload to the gastrointestinal tract(GIT)by carriers,still cannot treat inflammatory bowel diseases without avoid-ing side effects.Here,we developed payload-free protein nanop...Anti-inflammatory compounds,delivered as a payload to the gastrointestinal tract(GIT)by carriers,still cannot treat inflammatory bowel diseases without avoid-ing side effects.Here,we developed payload-free protein nanoparticles(PNPs)that crossed GIT to retain in the colon and treat colitis by restoring intestinal bar-rier integrity by modulating gut microbiome and metabolome.Specifically,PNPs,orally administered to mice with acute colitis,reached the colon within three hours.Consequently,PNPs improve gut microbiota dysbiosis to reverse metabolism bal-ance,suppressing the expression of tumor-necrosis factorαand toll-like receptor 4 that restores the intestinal barrier integrity.PNPs then ameliorated colon inflam-mation and attenuated gut microbiota dysbiosis by exerting probiotic effects on gut microbiota,treating colitis in a week more effectively than the clinically often used 5-aminosalicylic acid without causing undesired side effects.Such PNPs repre-sent safe,sustainable,and cost-effective therapeutics for treating inflammatory and metabolic diseases by eliminating microbial and metabolomic imbalance.展开更多
Converting common biomass materials to high-performance biomedical products could not only reduce the environmental pressure associated with the large-scale use of synthetic materials,but also increase the economic va...Converting common biomass materials to high-performance biomedical products could not only reduce the environmental pressure associated with the large-scale use of synthetic materials,but also increase the economic value.Chitosan as a very promising candidate has drawn considerable attention owing to its abundant sources and remarkable bioactivities.However,pure chitosan materials usually exhibit insufficient mechanical properties and excessive swelling ratio,which seriously affected their in vivo stability and integrity when applied as tissue engineering scaf-folds.Thus,simultaneously improving the mechanical strength and biological compatibility of pure chitosan(CS)scaffolds becomes very important.Here,inspired by the fiber-reinforced con-struction of natural extracellular matrix and the porous structure of cancellous bone,we built silk microfibers/chitosan composite scaffolds via ice-templating technique.This biomimetic strategy achieved 500%of mechanical improvement to pure chitosan,and meanwhile still maintaining high porosity(>87%).In addition,the increased roughness of chitosan pore walls by embedded silk microfibers significantly promoted cell adhesion and proliferation.More importantly,after subcutaneous implantation in mice for four weeks,the composite scaffold showed greater struc-tural integrity,as well as better collagenation,angiogenesis,and osteogenesis abilities,suggesting its great potential in biomedicine.展开更多
The most commonly found fingermarks at crime scenes are latent and, thus, an efficient method for detecting latent fingermarks is very important. However, traditional developing techniques have drawbacks such as low d...The most commonly found fingermarks at crime scenes are latent and, thus, an efficient method for detecting latent fingermarks is very important. However, traditional developing techniques have drawbacks such as low detection sensitivity, high background interference, complicated operation, and high toxicity. To tackle this challenge, we employed fluorescent NaYF4:Yb, Er upconversion nanoparticles (UCNPs), which can fluoresce visible light when excited by 980 nm human-safe near-infrared light, to stain the latent fingermarks on various substrate surfaces. The UCNPs were successfully used as a novel fluorescent label for the detection of latent fingermarks with high sensitivity, low background, high efficiency, and low toxicity on various substrates including non-infiltrating materials (glass, marble, aluminum alloy sheets, stainless steel sheets, aluminum foils, and plastic cards), semi-infiltrating materials (floor leathers, ceramic tiles, wood floor, and painted wood), and infiltrating materials such as various types of papers. This work shows that UCNPs are a versatile fluorescent label for the facile detection of fingermarks on virtually any material, enabling their practical applications in forensic sciences.展开更多
基金Zhejiang Provincial Science and Technology Plan,Grant/Award Number:2021C02072-6National Natural Science Foundation of China,Grant/Award Numbers:81911530223,32101095+4 种基金Provincial Key Laboratory Construction Plans,Grant/Award Number:2020E10025Plan of National and Zhejiang Provincial Youth Science and Technology Innovation Leader,Grant/Award Numbers:[2020]366,2018R52021Zhejiang Province Public Welfare Technology Research Plans,Grant/Award Number:LGF21H060008National Key Research and Development Program of China,Grant/Award Number:2023YFF1103900China Agriculture Research System of MOF and MARA。
文摘Anti-inflammatory compounds,delivered as a payload to the gastrointestinal tract(GIT)by carriers,still cannot treat inflammatory bowel diseases without avoid-ing side effects.Here,we developed payload-free protein nanoparticles(PNPs)that crossed GIT to retain in the colon and treat colitis by restoring intestinal bar-rier integrity by modulating gut microbiome and metabolome.Specifically,PNPs,orally administered to mice with acute colitis,reached the colon within three hours.Consequently,PNPs improve gut microbiota dysbiosis to reverse metabolism bal-ance,suppressing the expression of tumor-necrosis factorαand toll-like receptor 4 that restores the intestinal barrier integrity.PNPs then ameliorated colon inflam-mation and attenuated gut microbiota dysbiosis by exerting probiotic effects on gut microbiota,treating colitis in a week more effectively than the clinically often used 5-aminosalicylic acid without causing undesired side effects.Such PNPs repre-sent safe,sustainable,and cost-effective therapeutics for treating inflammatory and metabolic diseases by eliminating microbial and metabolomic imbalance.
基金supported by National Natural Science Foundation of China(No.52103149)State of Sericulture Industry Technol-ogy System(No.CARS-18-ZJ0501)+1 种基金Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province(No.2020E10025)Zhejiang University start-up fund,and the program“Construction of Mineralized Silk Fibroin Microfiber Rein-forced Chitosan Composite Scaffold and its Application in Bone Repair”.
文摘Converting common biomass materials to high-performance biomedical products could not only reduce the environmental pressure associated with the large-scale use of synthetic materials,but also increase the economic value.Chitosan as a very promising candidate has drawn considerable attention owing to its abundant sources and remarkable bioactivities.However,pure chitosan materials usually exhibit insufficient mechanical properties and excessive swelling ratio,which seriously affected their in vivo stability and integrity when applied as tissue engineering scaf-folds.Thus,simultaneously improving the mechanical strength and biological compatibility of pure chitosan(CS)scaffolds becomes very important.Here,inspired by the fiber-reinforced con-struction of natural extracellular matrix and the porous structure of cancellous bone,we built silk microfibers/chitosan composite scaffolds via ice-templating technique.This biomimetic strategy achieved 500%of mechanical improvement to pure chitosan,and meanwhile still maintaining high porosity(>87%).In addition,the increased roughness of chitosan pore walls by embedded silk microfibers significantly promoted cell adhesion and proliferation.More importantly,after subcutaneous implantation in mice for four weeks,the composite scaffold showed greater struc-tural integrity,as well as better collagenation,angiogenesis,and osteogenesis abilities,suggesting its great potential in biomedicine.
基金This work is supported by the National Natural Science Foundation of China (No. 21205139), the Application and Innovation Project of Chinese Ministry of Public Security (No. 2012YYCXXJXY127), and the Program for Liaoning Excellent Talents in University (No. LJQ2014130). MYY is thankful for the grant support from the National Natural Science Foundation of China (Nos. 20804037 and 21172194) and National High Technology Research and Development Program 863 (No. 2013AA102507). YZ, PHQ and CBM would like to thank the financial support from National Institutes of Health (No. EB015190), National Natural Science Foundation (No. CMMI-1234957 and DMR-0847758), Department of Defense Peer Reviewed Medical Research Program (No. W81XWH-12-1-0384), Oklahoma Center for the Advancement of Science and Technology (No. HR14-160) and Oklahoma Center for Adult Stem Cell Research (No. 434003).
文摘The most commonly found fingermarks at crime scenes are latent and, thus, an efficient method for detecting latent fingermarks is very important. However, traditional developing techniques have drawbacks such as low detection sensitivity, high background interference, complicated operation, and high toxicity. To tackle this challenge, we employed fluorescent NaYF4:Yb, Er upconversion nanoparticles (UCNPs), which can fluoresce visible light when excited by 980 nm human-safe near-infrared light, to stain the latent fingermarks on various substrate surfaces. The UCNPs were successfully used as a novel fluorescent label for the detection of latent fingermarks with high sensitivity, low background, high efficiency, and low toxicity on various substrates including non-infiltrating materials (glass, marble, aluminum alloy sheets, stainless steel sheets, aluminum foils, and plastic cards), semi-infiltrating materials (floor leathers, ceramic tiles, wood floor, and painted wood), and infiltrating materials such as various types of papers. This work shows that UCNPs are a versatile fluorescent label for the facile detection of fingermarks on virtually any material, enabling their practical applications in forensic sciences.