期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Mine tailings as a raw material in alkali activation: A review 被引量:8
1
作者 Jenni Kiventerä Priyadharshini Perumal +1 位作者 Juho Yliniemi mirja illikainen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第8期1009-1020,共12页
The mining industry produces billions of tons of mine tailings annually.However,because of their lack of economic value,most of the tailings are discarded near the mining sites,typically under water.The primary enviro... The mining industry produces billions of tons of mine tailings annually.However,because of their lack of economic value,most of the tailings are discarded near the mining sites,typically under water.The primary environmental concerns of mine tailings are related to their heavy metal and sulfidic mineral content.Oxidation of sulfidic minerals can produce acid mine drainage that leaches heavy metals into the surrounding water.The management of tailing dams requires expensive construction and careful control,and there is the need for stable,sustainable,and economically viable management technologies.Alkali activation as a solidification/stabilization technology offers an attractive way to deal with mine tailings.Alkali activated materials are hardened,concrete-like structures that can be formed from raw materials that are rich in aluminum and silicon,which fortunately,are the main elements in mining residues.Furthermore,alkali activation can immobilize harmful heavy metals within the structure.This review describes the research on alkali activated mine tailings.The reactivity and chemistry of different minerals are discussed.Since many mine tailings are poorly reactive under alkaline conditions,different pretreatment methods and their effects on the mineralogy are reviewed.Possible applications for these materials are also discussed. 展开更多
关键词 Mine tailings alkali activation thermal treatment mechanical activation alkaline fusion heavy metal immobilization
下载PDF
Effect of the Molecular Structure of Polymer Dispersants on Limestone Suspension Properties in Fine Grinding 被引量:2
2
作者 Katja Ohenoja Juha Saari +1 位作者 mirja illikainen Jouko Niinimaeki 《Journal of Chemistry and Chemical Engineering》 2013年第7期606-612,共7页
Polymer dispersants are widely used as grinding aids to reduce the viscosity of mineral particle suspensions and to improve energy efficiency during fine grinding. The authors studied here the effects of polymer dispe... Polymer dispersants are widely used as grinding aids to reduce the viscosity of mineral particle suspensions and to improve energy efficiency during fine grinding. The authors studied here the effects of polymer dispersants of different molecular structure on limestone suspension properties in wet stirred media milling. The polymers differed in their molecular weight and PDI (polydispersity index). Two traditionally fractionated polymer dispersants having a high PDI (over 2) and one made by controlled radical polymerization having a low PDI (1.2) were tested. It was noticed that these dispersants worked as electrosteric stabilizers and prevented the agglomeration of ground limestone particles. Their addition allowed increased solids concentrations to be used in the grinding experiments and at the same time lowered the particle size and specific energy consumption. The particle sizes obtained were about 1 μm regardless of the dispersant or its dose. The dispersant with a low PDI reduced the viscosity more than did the high PDI dispersants. The results indicate that higher solids concentrations can be used at the same dispersant dose when a low PDI dispersant is used, leading to energy savings via increased throughput. Alternatively, a lower dose of low PDI polymer dispersant than of a high PDI polymer dispersant can be used at the same solids concentration. 展开更多
关键词 Calcium carbonate CaCO3 stirred media mill POLYACRYLATE molecular weight polydispersity index.
下载PDF
Recycling alkali activated slag into artificial aggregate:Influence of particle size distribution of the starting material on granulation
3
作者 Kalle Kursula mirja illikainen Priyadharshini Perumal 《Low-carbon Materials and Green Construction》 2023年第1期381-390,共10页
Wet granulation is a potential method to develop artificial aggregates.In this paper,the granulation of recycled alkali-activated slag powders with different particle size(d_(50) ranging between 12.9-127.7μm)distribu... Wet granulation is a potential method to develop artificial aggregates.In this paper,the granulation of recycled alkali-activated slag powders with different particle size(d_(50) ranging between 12.9-127.7μm)distributions were investigated in order to find how these affect on the engineering properties of the artificial aggregates.Blast furnace slag was added as co-binder in 10-30 wt.%during the granulation process and to enhance the properties,especially mechanical strength.The results show that the particle size of the raw material significantly affects the engineering properties of the produced aggregates,such as the crushing force(19-131.8 N),bulk density,water absorption,porosity and microstructure of the granules.The results show that granulation is a promising method to recycle alkali-activated materials as lightweight aggregates to replace natural aggregates. 展开更多
关键词 Artificial aggregate Recycled concrete fines Concrete powder GRANULATION Alkali activation Recycling geopolymer
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部