The realization of a stable lithium-metal free(LiMF)sulfur battery based on amorphous carbon anode and lithium sulfide(Li_(2)S)cathode is here reported.In particular,a biomass waste originating full-cell combining a c...The realization of a stable lithium-metal free(LiMF)sulfur battery based on amorphous carbon anode and lithium sulfide(Li_(2)S)cathode is here reported.In particular,a biomass waste originating full-cell combining a carbonized brewer's spent grain(CBSG)biochar anode with a Li_(2)S-graphene composite cathode(Li_(2)S70Gr30)is proposed.This design is particularly attractive for applying a cost-effective,high performance,environment friendly,and safe anode material,as an alternative to standard graphite and metallic lithium in emerging battery technologies.The anodic and cathodic materials are characterized in terms of structure,morphology and composition through X-ray diffraction,scanning and transmission electron microscopy,X-ray photoelectron and Raman spectroscopies.Furthermore,an electrochemical characterization comprising galvanostatic cycling,rate capability and cyclic voltammetry tests were carried out both in half-cell and full-cell configurations.The systematic investigation reveals that unlike graphite,the biochar electrode displays good compatibility with the electrolyte typically employed in sulfur batteries.The CBSG/Li_(2)S70Gr30 full-cell demonstrates an initial charge and discharge capacities of 726 and 537 mAh g^(-1),respectively,at 0.05C with a coulombic efficiency of 74%.Moreover,it discloses a reversible capacity of 330 mAh g^(-1)(0.1 C)after over 300 cycles.Based on these achievements,the CBSG/Li_(2)S70Gr30 battery system can be considered as a promising energy storage solution for electric vehicles(EVs),especially when taking into account its easy scalability to an industrial level.展开更多
A series of CoPd/KIT-6 bimetallic catalysts with various Co:Pd molar ratios at different calcination temperatures were prepared and used for the direct synthesis of H_(2)O_(2) from H_(2) and O_(2).These catalysts were...A series of CoPd/KIT-6 bimetallic catalysts with various Co:Pd molar ratios at different calcination temperatures were prepared and used for the direct synthesis of H_(2)O_(2) from H_(2) and O_(2).These catalysts were characterized by nitrogen adsorption-desorption,low and wide-angle X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),transmission electron microscopy(TEM),scanning electron microscopy(SEM),elemental mapping and energy-dispersive X-ray(EDX)methods.It was found that the particle size,electronic interactions,morphology,and textural properties of these catalysts as well as their catalytic activity in the reaction of H_(2) with O_(2) were affected by Co addition and different calcination temperatures.Also,the results showed that while the H_(2)O_(2) selectivity depends on Pd^(2+) species,the H_(2) conversion is related to Pd0 active sites.Among these catalysts,CoPd/KIT-6 calcined at 350℃(CoPd/KIT-350 catalyst)showed the best catalytic activity with 50%of H_(2)O_(2) selectivity and 51%conversion of H_(2).展开更多
Halide perovskite light emitting diodes(LEDs)have gained great progress in recent years.However,mixed-halide perovskites for blue LEDs usually suffer from electroluminescence(EL)spectra shift at a high applied voltage...Halide perovskite light emitting diodes(LEDs)have gained great progress in recent years.However,mixed-halide perovskites for blue LEDs usually suffer from electroluminescence(EL)spectra shift at a high applied voltage or current density,limiting their efficiency.In this work,we report a strategy of using single-layer perovskite quantum dots(QDs)film to tackle the electroluminescence spectra shift in pure-blue perovskite LEDs and improve the LED efficiency by co-doping copper and potassium in the mixed-halide perovskite QDs.As a result,we obtained pure-blue halide perovskite QD-LEDs with stable EL spectra centred at 469 nm even at a current density of 1,617 mA·cm^(−2).The optimal device presents a maximum external quantum efficiency(EQE)of 2.0%.The average maximum EQE and luminance of the LEDs are 1.49%and 393 cd·m^(−2),increasing 62%and 66%compared with the control LEDs.Our study provides an effective strategy for achieving spectra-stable and highly efficient pure-blue perovskite LEDs.展开更多
基金the Natural Science Foundation of China,grant no.32071317
文摘The realization of a stable lithium-metal free(LiMF)sulfur battery based on amorphous carbon anode and lithium sulfide(Li_(2)S)cathode is here reported.In particular,a biomass waste originating full-cell combining a carbonized brewer's spent grain(CBSG)biochar anode with a Li_(2)S-graphene composite cathode(Li_(2)S70Gr30)is proposed.This design is particularly attractive for applying a cost-effective,high performance,environment friendly,and safe anode material,as an alternative to standard graphite and metallic lithium in emerging battery technologies.The anodic and cathodic materials are characterized in terms of structure,morphology and composition through X-ray diffraction,scanning and transmission electron microscopy,X-ray photoelectron and Raman spectroscopies.Furthermore,an electrochemical characterization comprising galvanostatic cycling,rate capability and cyclic voltammetry tests were carried out both in half-cell and full-cell configurations.The systematic investigation reveals that unlike graphite,the biochar electrode displays good compatibility with the electrolyte typically employed in sulfur batteries.The CBSG/Li_(2)S70Gr30 full-cell demonstrates an initial charge and discharge capacities of 726 and 537 mAh g^(-1),respectively,at 0.05C with a coulombic efficiency of 74%.Moreover,it discloses a reversible capacity of 330 mAh g^(-1)(0.1 C)after over 300 cycles.Based on these achievements,the CBSG/Li_(2)S70Gr30 battery system can be considered as a promising energy storage solution for electric vehicles(EVs),especially when taking into account its easy scalability to an industrial level.
基金the financial support(Research Council Grant)provided by Isfahan University of Technology(Iran).
文摘A series of CoPd/KIT-6 bimetallic catalysts with various Co:Pd molar ratios at different calcination temperatures were prepared and used for the direct synthesis of H_(2)O_(2) from H_(2) and O_(2).These catalysts were characterized by nitrogen adsorption-desorption,low and wide-angle X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),transmission electron microscopy(TEM),scanning electron microscopy(SEM),elemental mapping and energy-dispersive X-ray(EDX)methods.It was found that the particle size,electronic interactions,morphology,and textural properties of these catalysts as well as their catalytic activity in the reaction of H_(2) with O_(2) were affected by Co addition and different calcination temperatures.Also,the results showed that while the H_(2)O_(2) selectivity depends on Pd^(2+) species,the H_(2) conversion is related to Pd0 active sites.Among these catalysts,CoPd/KIT-6 calcined at 350℃(CoPd/KIT-350 catalyst)showed the best catalytic activity with 50%of H_(2)O_(2) selectivity and 51%conversion of H_(2).
基金the National Natural Science Foundation of China(Nos.52102188 and 52072337)the Key Research and Development Program of Zhejiang Province(No.2021C01030)+4 种基金the Natural Science Foundation of Zhejiang Province(No.LQ21F040005)the Postdoctoral Science Foundation of Zhejiang Province(No.ZJ2022132)the Science and Technology Project of Wenzhou(No.2022G0253)the Leading Talent Entrepreneurship Project of Ouhai District,Wenzhou City,the Young Elite Scientists Sponsorship Program by CAST(No.YESS20210444)the Shanxi‐Zheda Institute of Advanced Materials and Chemical Engineering(No.2022SZ‐TD004).
文摘Halide perovskite light emitting diodes(LEDs)have gained great progress in recent years.However,mixed-halide perovskites for blue LEDs usually suffer from electroluminescence(EL)spectra shift at a high applied voltage or current density,limiting their efficiency.In this work,we report a strategy of using single-layer perovskite quantum dots(QDs)film to tackle the electroluminescence spectra shift in pure-blue perovskite LEDs and improve the LED efficiency by co-doping copper and potassium in the mixed-halide perovskite QDs.As a result,we obtained pure-blue halide perovskite QD-LEDs with stable EL spectra centred at 469 nm even at a current density of 1,617 mA·cm^(−2).The optimal device presents a maximum external quantum efficiency(EQE)of 2.0%.The average maximum EQE and luminance of the LEDs are 1.49%and 393 cd·m^(−2),increasing 62%and 66%compared with the control LEDs.Our study provides an effective strategy for achieving spectra-stable and highly efficient pure-blue perovskite LEDs.