The fundamental problem of an elastic-plastic body subjected to incremental loading is reviewed using a compact internal variable approach based on work carried out at the University of Cape Town in which a quadratic ...The fundamental problem of an elastic-plastic body subjected to incremental loading is reviewed using a compact internal variable approach based on work carried out at the University of Cape Town in which a quadratic functional was developed for the free energy using Taylor series. Now the departure from that approach is the focus on developing the Liapunov function for the nonlinear differential equations of motion. Static and dynamic equations of motion are derived and shown to meet the requirements of the Liapunov function. As a consequence, time integration parameters that are used in the discrete formulations are easily obtained based on the same requirements. The resulting generalized Newton-Raphson scheme is stable in the sense of Liapunov's direct method.展开更多
文摘The fundamental problem of an elastic-plastic body subjected to incremental loading is reviewed using a compact internal variable approach based on work carried out at the University of Cape Town in which a quadratic functional was developed for the free energy using Taylor series. Now the departure from that approach is the focus on developing the Liapunov function for the nonlinear differential equations of motion. Static and dynamic equations of motion are derived and shown to meet the requirements of the Liapunov function. As a consequence, time integration parameters that are used in the discrete formulations are easily obtained based on the same requirements. The resulting generalized Newton-Raphson scheme is stable in the sense of Liapunov's direct method.