In this paper, at first, the single input rule modules(SIRMs) dynamically connected fuzzy inference model is used to stabilize a double inverted pendulum system. Then, a multiobjective particle swarm optimization(MOPS...In this paper, at first, the single input rule modules(SIRMs) dynamically connected fuzzy inference model is used to stabilize a double inverted pendulum system. Then, a multiobjective particle swarm optimization(MOPSO) is implemented to optimize the fuzzy controller parameters in order to decrease the distance error of the cart and summation of the angle errors of the pendulums, simultaneously. The feasibility and efficiency of the proposed Pareto front is assessed in comparison with results reported in literature and obtained from other algorithms.Finally, the Java programming with applets is utilized to simulate the stability of the nonlinear system and explain the internetbased control.展开更多
文摘In this paper, at first, the single input rule modules(SIRMs) dynamically connected fuzzy inference model is used to stabilize a double inverted pendulum system. Then, a multiobjective particle swarm optimization(MOPSO) is implemented to optimize the fuzzy controller parameters in order to decrease the distance error of the cart and summation of the angle errors of the pendulums, simultaneously. The feasibility and efficiency of the proposed Pareto front is assessed in comparison with results reported in literature and obtained from other algorithms.Finally, the Java programming with applets is utilized to simulate the stability of the nonlinear system and explain the internetbased control.