期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Studying the Effect of Polyester Fiber Blend Ratio and Pilling Cycle on Blended Knit Fabrics
1
作者 Kazi Md. Elias mohammad obaidur rahman H. M. Zakir Hossain 《Journal of Textile Science and Technology》 2023年第4期227-243,共17页
Pilling is a severe concern for blended fabrics. The aesthetic look and smoothness are the buyers’ prime requirements. The main focus of the study was to see the pilling behavior from various percentages of polyester... Pilling is a severe concern for blended fabrics. The aesthetic look and smoothness are the buyers’ prime requirements. The main focus of the study was to see the pilling behavior from various percentages of polyester fiber blend ratio as well as the different pilling cycles on blended fabrics. The cotton, polyester, and elastane prepared the study fabrics. These fabrics are (90% Cotton/5% Polyester/5% Elastane, 90% Cotton/6% Polyester/4% Elastane, 90% Cotton/7% Polyester/3% Elastane, 90% Cotton/8% Polyester/2% Elastane, and 90% Cotton/9% Polyester/1% Elastane, 85% Cotton/10% Polyester/5% Elastane, 85% Cotton/11% Polyester/4% Elastane, 85% Cotton/12% Polyester/3% Elastane, 85% Cotton/13% Polyester/2% Elastane, and 85% Cotton/ 14% Polyester/1% Elastane, 80% Cotton/15% Polyester/5% Elastane, 80% Cotton/16% Polyester/4% Elastane, 80% Cotton/17% Polyester/3% Elastane, 80% Cotton/18% Polyester/2% Elastane, and 80% Cotton/19% Polyester/1% Elastane). The selected polyester blend ratios were 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18% and 19% respectively. The study used the Martindale pilling tester with 2000, 5000, and 7000 cycles, respectively. The evaluation followed the ISO 12945-2:2000. The study findings are that the polyester fiber blend ratio did not influence the pilling grade on blended fabrics for pilling cycles 2000, and the pilling grade remained constant at 4 - 5. The pilling grade started to deteriorate in pilling cycle 5000 for the fabrics 85%C/10%P/5%E, 85%C/11%P/4%E, 85%C/12%P/3%E, 85%C/ 13%P/2%E, 85%C/14%P/1%E showed the pilling grade 4, and the fabrics made from 80%C/15%P/5%E, 80%C/16%P/4%E, 80%C/17%P/3%E, 80%C/ 18%P/2%E, 80%C/19%P/1%E showed the pilling grade 4, 3, 3, 3, and 3 respectively. For the pilling cycles 7000, the pilling grade further deteriorated for the fabrics 80%C/15%P/5%E, 80%C/16%P/4%E, 80%C/17%P/3%E, 80%C/ 18%P/2%E, 80%C/19%P/1%E showed the pilling grade 3, 3, 2, 2, and 2 respectively. The study finds the dominance of polyester fiber throughout the experiment. The author hopes this study’s outcome will help new researchers, advanced researchers, and the textile industry’s sustainable development research and development team. 展开更多
关键词 PILLING Cotton POLYESTER Elastane BLENDED Knit FABRIC
下载PDF
Predicting Bursting Strength Behavior of Weft Knitted Fabrics Using Various Percentages of Cotton, Polyester, and Spandex Fibers
2
作者 Kazi Md. Elias mohammad obaidur rahman H. M. Zakir Hossain 《Journal of Textile Science and Technology》 2023年第4期273-290,共18页
The bursting strength is an essential quality parameter of knit fabric. The fabric structure, weight, types of fibers, and fiber blend proportion influence the bursting strength parameter. The tenacity of polyester fi... The bursting strength is an essential quality parameter of knit fabric. The fabric structure, weight, types of fibers, and fiber blend proportion influence the bursting strength parameter. The tenacity of polyester fiber is better than cotton and spandex. The study focused on predicting knit fabric bursting strength test value using different fibers (cotton, polyester, and spandex) with varying percentages of the blend ratio. This study used fifteen categories of blended fabrics. The Pearson Correlation and the hypothetical ANOVA regression analysis were conducted to do the statistical significance test. The experimental result reveals that the bursting strength test result increased with the increased percentage of polyester and suggested a suitable regression equation. The dominance of the polyester fiber was observed throughout the experiment, i.e., the higher the polyester blend proportion, the higher the bursting strength value. The inclusion of polyester in blends can reduce the cost of fabric. The developed prediction model or equation can help the fabric manufacturer make appropriate decisions regarding getting the expected bursting strength. The researcher hopes that the findings from this study will motivate new researchers, advanced researchers, and the textile manufacturing industry. 展开更多
关键词 Kilopascal Prediction Bursting-Strength Blended Fabric COTTON POLYESTER SPANDEX
下载PDF
Effect of Strain Rate on Tensile Behavior of Sn-9Zn-xAg-ySb;{(x, y) = (0.2, 0.6), (0.2, 0.8), (0.6, 0.2), (0.8, 0.2)} Lead-Free Solder Alloys
3
作者 Shihab Uddin Md. Abdul Gafur mohammad obaidur rahman 《Materials Sciences and Applications》 CAS 2023年第4期273-283,共11页
The tensile properties of Sn-9Zn-xAg-ySb;{(x, y) = (0.2, 0.6), (0.2, 0.8), (0.6, 0.2), (0.8, 0.2)} lead-free solders were investigated. All the test samples were annealed at 150°C for 1 hour. The tests are carrie... The tensile properties of Sn-9Zn-xAg-ySb;{(x, y) = (0.2, 0.6), (0.2, 0.8), (0.6, 0.2), (0.8, 0.2)} lead-free solders were investigated. All the test samples were annealed at 150°C for 1 hour. The tests are carried out at room temperature at the strain rate of 4.17 × 10<sup>-3</sup> s<sup>-1</sup>, 20.85 × 10<sup>-3</sup> s<sup>-1</sup>, and 208.5 × 10<sup>-3</sup> s<sup>-1</sup>. It is seen that the tensile strength increases and the ductility decrease with increasing the strain rate over the investigated range. From the strain rate change test results, the strain sensitivity values are found in the range of 0.0831 to 0.1455 due to the addition of different alloying elements. 展开更多
关键词 Lead-Free Solder Strain Rate Strain Sensitivity DUCTILITY Tensile Properties
下载PDF
Effect of Bismuth Addition on Structure and Mechanical Properties of Tin-9Zinc Soldering Alloy
4
作者 Muhommad Abdul Wadud M. A. Gafur +1 位作者 Md. Rakibul Qadir mohammad obaidur rahman 《Materials Sciences and Applications》 2015年第9期792-798,共7页
Sn-Zn based solder is a possible replacement of Pb solder because of its better mechanical properties. The alloys need to be studied and explored to get a usable solder alloy having better properties. In this work eut... Sn-Zn based solder is a possible replacement of Pb solder because of its better mechanical properties. The alloys need to be studied and explored to get a usable solder alloy having better properties. In this work eutectic Sn-9Zn and three Tin-Zinc-Bismuth ternary alloys were prepared and investigated their microhardness and mechanical properties. Microhardness, tensile strength and elastic modulus increase with Bi addition while ductility decreases with Bi addition. 展开更多
关键词 Lead Free SOLDER ALLOY EUTECTIC ALLOY MICROHARDNESS
下载PDF
Characterization and Fabrication of Pb-Based Perovskites Solar Cells under Atmospheric Condition and Stability Enhancement
5
作者 Shah Sultan Ashrafi M. K. Hossain +7 位作者 Md. Momanul Islam M. U. Hossain S. M. Fahad M. Kamrujjaman Md. Maidul Islam Masum F. Ahmed M. A. Hossain mohammad obaidur rahman 《Advances in Materials Physics and Chemistry》 2020年第11期282-296,共15页
Optimization of Graphene concentration in optoelectronic properties has been studied which leads to progressive stability based on Graphene-CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub&g... Optimization of Graphene concentration in optoelectronic properties has been studied which leads to progressive stability based on Graphene-CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> employing nanoparticles perovskites solar cells in this work. CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> wafer-based hetero-junction solar cells were developed under atmospheric conditions using Graphite as a hole transport layer (HTL) and TiO<sub>2</sub> as an electron transport layer (ETL). In particular a considerable enhancement in power conversion efficiency (PCE < 0.01%) has been realized using optimum Graphene concentration (0.05 g/ml). The charge injection rate is radically faster for the particular Graphene composition than the pristine perovskites, which exposes ephemeral absorption in near to UV range. Graphene incorporation increased the average crystallite size and reduced the band gap 1.32 eV in the visible range. The expensive metals such as Ag and Au have been replaced by simple ITO, which tremendously reduces the fabrication cost of the PSCs. The fabricated devices were exposed to high conservation stability without cell encapsulation ambient condition for 150 days to show excellent stability. 展开更多
关键词 GRAPHENE Perovskites Hetero-Junction Conversion Efficiency ATMOSPHERIC
下载PDF
Chemical Modification on Woven Jute and Nonwoven Wet-Laid Glass Fiber Sheet Reinforced Poly-(<i>ε</i>-Caprolactone) Composites
6
作者 mohammad Muzammel Hossen mohammad obaidur rahman 《Open Journal of Composite Materials》 2021年第4期63-81,共19页
High-moisture regains nature of cellulosic fibers considered one of the critical drawbacks for jute-based applications. To minimize this by developing better interfacial adhesion, a hydrophobic nonwoven wet-laid glass... High-moisture regains nature of cellulosic fibers considered one of the critical drawbacks for jute-based applications. To minimize this by developing better interfacial adhesion, a hydrophobic nonwoven wet-laid glass fiber sheet used <span style="font-family:Verdana;">the</span><span style="font-family:Verdana;"> woven jute fabric in this experiment. For this purpose, woven jute fabric </span><span style="font-family:;" "=""><span style="font-family:Verdana;">wa</span><span style="font-family:Verdana;">s </span></span><span style="font-family:;" "=""><span style="font-family:Verdana;">categorized into untreated, silane, alkali, and alkali-silane combined treatment then compounded with the solution of polycaprolactone </span><span style="font-family:Verdana;">(PCL). Fabric</span></span><span style="font-family:Verdana;">ation of composites performed </span><span style="font-family:Verdana;">the </span><span style="font-family:;" "=""><span style="font-family:Verdana;">following sandwich method based on differ</span><span style="font-family:Verdana;">ent hot-pressing time </span></span><span style="font-family:Verdana;">with</span><span style="font-family:Verdana;"> temperature for detecting a prominent fabrication parameter. Surface treated jute fibers characterized using FTIR spectro</span><span style="font-family:;" "=""><span style="font-family:Verdana;">sco</span><span style="font-family:Verdana;">py. Hence, the mechanical and thermal properties of composites were investiga</span><span style="font-family:Verdana;">ted to find the consequence of chemical treatments into woven jute fabric. Alkali-silane combined chemical treatments resulting in improved 48.38% of tensile strength over untreated optimized composites. Scanning electron microscope (SEM) used for displaying interfacial adhesion between fiber and polymer matrix. Besides, further investigation demonstrated due to the combined chemical treatment of alkali-silane optimized composites significantly enhanced the thermogravimetric (TGA) stability in contrast to other composites.</span></span> 展开更多
关键词 Woven Jute Fabric POLYCAPROLACTONE Compression Molding Surface Modification Mechanical Properties
下载PDF
Thermal Behavior and Magnetic Properties of Nd-Fe-B Based Exchange Spring Nanocomposites Nd<sub>4-x</sub>Tb<sub>x</sub>Fe<sub>83.5</sub>Co<sub>5</sub>Cu<sub>0.5</sub>Nb<sub>1</sub>B<sub>6</sub>(x = 0, 0.2, 0.4, 0.6, 0.8 and 1) Melt-Spun Ribbons 被引量:1
7
作者 Palash Chandra Karmaker mohammad obaidur rahman +4 位作者 Nguyen Huy Dan Samia Islam Liba Per Nordblad Dilip Kumar Saha Sheikh Manjura Hoque 《Advances in Materials Physics and Chemistry》 2017年第6期223-241,共19页
Co-rich Nd-Fe-B nanocomposite ribbons with Tb substituted have been fabricated by single roller melt spinning technique of Nd4-xTbxFe83.5Co5Cu0.5Nb1B6 (x = 0, 0.2, 0.4, 0.6, 0.8 and 1) alloys in an argon (Ar) atmosphe... Co-rich Nd-Fe-B nanocomposite ribbons with Tb substituted have been fabricated by single roller melt spinning technique of Nd4-xTbxFe83.5Co5Cu0.5Nb1B6 (x = 0, 0.2, 0.4, 0.6, 0.8 and 1) alloys in an argon (Ar) atmosphere at a circumferential speed of 40 m/s. According to the differential scanning calorimeter (DSC) traces the nanocomposite samples have been annealed at different temperatures like 675°C, 687°C, 700°C, 712°C and 725°C for 10 min. Crystallization behavior was studied by X-ray diffraction in which it was found that the XRD patterns are characterized by broad diffused pattern which demonstrate the amorphous state of materials. The ribbon samples were also characterized by vibration sample magnetometer (VSM) and M&ouml;ssbauer spectroscopy at as-cast and annealed condition. Co-rich and Tb substitution has significantly enhanced the value of coercivity (Hc) and maximum energy product (BH)max. Highest value of Hc and (BH)max has been obtained as 2.36 kOe and 6.11 MGOe for the sample annealed at 700°C for 10 min with higher concentration of Tb. The M-H hysteresis loops show extremely soft natures which do not possess any area. We have found reduced remanent ratio (Mr/Ms) up to 0.49 at optimal annealing temperature 700°C. However, with the annealing of the samples in the above mentioned temperature, evolution of large coercivity was observed due to the formation of exchange couple hard and soft nanocrystal composites. We have investigated the variation of Curie temperature (Tc) with annealing temperature of the melt spun ribbon samples. Mossbauer spectroscopy was carried out to study the hyperfine parameters such as hyperfine field, hyperfine field distribution for full width half maximum (FWHM) and isomer shift of Fe species of these two phases. 展开更多
关键词 COERCIVITY Maximum Energy Product Remanent Ratio Nanocomposite Hard and Soft Phases
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部