Electroceramic calcium copper titanates(CaCu3Ti4O12,CCTO),with high dielectric permittivities(e) of approximately 105 and 104,respectively,for single crystal and bulk materials,are produced for a number of wellestab...Electroceramic calcium copper titanates(CaCu3Ti4O12,CCTO),with high dielectric permittivities(e) of approximately 105 and 104,respectively,for single crystal and bulk materials,are produced for a number of wellestablished and emerging applications such as resonator,capacitor,and sensor.These applications take advantage of the unique properties achieved through the structure and properties of CCTO.This review comprehensively focuses on the primary processing routes,effect of impurity,dielectric permittivity,and deposition technique used for the processing of electroceramics along with their chemical composition and micro and nanostructures.Emphasis is given to versatile and basic approaches that allow one to control the microstructural features that ultimately determine the properties of the CCTO ceramic.Despite the intensive research in this area,none of the studies available in the literature provides all the possible relevant information about CCTO fabrication,structure,the factors influencing its dielectric properties,CCTO immobilization,and sensing applications.展开更多
Magnetic core-shell nanoparticles have been widely studied because of their excellent and convenient magnetic and electrical properties.In this present work core-shell magneticnanoparticles (MNPs) were synthesized by ...Magnetic core-shell nanoparticles have been widely studied because of their excellent and convenient magnetic and electrical properties.In this present work core-shell magneticnanoparticles (MNPs) were synthesized by simple chemical precipitation method. Firstly Mg(x)Fe(1–x)O (magnesiwuestite) nano powder samples were synthesised by low temperature chemical combustion method. Secondly the as synthesised Mg(x)Fe(1–x)O nanoparticles are used to synthesis magnetic core-shell Nano particles byusing 2-propanol, poly ethylene glycol (PEG), ammonia solution 30 wt%, tetraethyl orthosilicate (TEOS). Separation of the core-shell magnetic nanoparticles from the aqueous suspension using a centrifuge. The synthesised MNPs and core shell MNP were characterized by X-ray diffraction (XRD), Thermal gravimetric-differential thermal analyzer (TG-DTA), Transmission electron microscopy (TEM), scanning electron microscopy (SEM), (EDAX) for structural, thermal and morphological respectively. It is observed that the particle size of spherical sampleis 32.5 nm.展开更多
基金supported by the Universiti Sains Malaysia(USM) fellowship(APEX 91002/JHEA/ATSG4001)fundamental research grant scheme(FRGS) under grant number of 203/PBAHAN/6071263
文摘Electroceramic calcium copper titanates(CaCu3Ti4O12,CCTO),with high dielectric permittivities(e) of approximately 105 and 104,respectively,for single crystal and bulk materials,are produced for a number of wellestablished and emerging applications such as resonator,capacitor,and sensor.These applications take advantage of the unique properties achieved through the structure and properties of CCTO.This review comprehensively focuses on the primary processing routes,effect of impurity,dielectric permittivity,and deposition technique used for the processing of electroceramics along with their chemical composition and micro and nanostructures.Emphasis is given to versatile and basic approaches that allow one to control the microstructural features that ultimately determine the properties of the CCTO ceramic.Despite the intensive research in this area,none of the studies available in the literature provides all the possible relevant information about CCTO fabrication,structure,the factors influencing its dielectric properties,CCTO immobilization,and sensing applications.
文摘Magnetic core-shell nanoparticles have been widely studied because of their excellent and convenient magnetic and electrical properties.In this present work core-shell magneticnanoparticles (MNPs) were synthesized by simple chemical precipitation method. Firstly Mg(x)Fe(1–x)O (magnesiwuestite) nano powder samples were synthesised by low temperature chemical combustion method. Secondly the as synthesised Mg(x)Fe(1–x)O nanoparticles are used to synthesis magnetic core-shell Nano particles byusing 2-propanol, poly ethylene glycol (PEG), ammonia solution 30 wt%, tetraethyl orthosilicate (TEOS). Separation of the core-shell magnetic nanoparticles from the aqueous suspension using a centrifuge. The synthesised MNPs and core shell MNP were characterized by X-ray diffraction (XRD), Thermal gravimetric-differential thermal analyzer (TG-DTA), Transmission electron microscopy (TEM), scanning electron microscopy (SEM), (EDAX) for structural, thermal and morphological respectively. It is observed that the particle size of spherical sampleis 32.5 nm.