期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A Short Review on Copper Calcium Titanate(CCTO) Electroceramic;Synthesis,Dielectric Properties,Film Deposition,and Sensing Application 被引量:2
1
作者 mohsen ahmadipour Mohd Fadzil Ain Zainal Arifin Ahmad 《Nano-Micro Letters》 SCIE EI CAS 2016年第4期291-311,共21页
Electroceramic calcium copper titanates(CaCu3Ti4O12,CCTO),with high dielectric permittivities(e) of approximately 105 and 104,respectively,for single crystal and bulk materials,are produced for a number of wellestab... Electroceramic calcium copper titanates(CaCu3Ti4O12,CCTO),with high dielectric permittivities(e) of approximately 105 and 104,respectively,for single crystal and bulk materials,are produced for a number of wellestablished and emerging applications such as resonator,capacitor,and sensor.These applications take advantage of the unique properties achieved through the structure and properties of CCTO.This review comprehensively focuses on the primary processing routes,effect of impurity,dielectric permittivity,and deposition technique used for the processing of electroceramics along with their chemical composition and micro and nanostructures.Emphasis is given to versatile and basic approaches that allow one to control the microstructural features that ultimately determine the properties of the CCTO ceramic.Despite the intensive research in this area,none of the studies available in the literature provides all the possible relevant information about CCTO fabrication,structure,the factors influencing its dielectric properties,CCTO immobilization,and sensing applications. 展开更多
关键词 CCTO Chemical synthesis Dielectric permittivity Loss factor DEPOSITION Sensitivity
下载PDF
Preparation and Characterization of Nano-Sized (Mg<sub>(x)</sub>Fe<sub>(1–x)</sub>O/SiO<sub>2</sub>) (x = 0.1) Core-Shell Nanoparticles by Chemical Precipitation Method 被引量:4
2
作者 mohsen ahmadipour Mozhgan Hatami Kalagadda Venkateswara Rao 《Advances in Nanoparticles》 2012年第3期37-43,共7页
Magnetic core-shell nanoparticles have been widely studied because of their excellent and convenient magnetic and electrical properties.In this present work core-shell magneticnanoparticles (MNPs) were synthesized by ... Magnetic core-shell nanoparticles have been widely studied because of their excellent and convenient magnetic and electrical properties.In this present work core-shell magneticnanoparticles (MNPs) were synthesized by simple chemical precipitation method. Firstly Mg(x)Fe(1–x)O (magnesiwuestite) nano powder samples were synthesised by low temperature chemical combustion method. Secondly the as synthesised Mg(x)Fe(1–x)O nanoparticles are used to synthesis magnetic core-shell Nano particles byusing 2-propanol, poly ethylene glycol (PEG), ammonia solution 30 wt%, tetraethyl orthosilicate (TEOS). Separation of the core-shell magnetic nanoparticles from the aqueous suspension using a centrifuge. The synthesised MNPs and core shell MNP were characterized by X-ray diffraction (XRD), Thermal gravimetric-differential thermal analyzer (TG-DTA), Transmission electron microscopy (TEM), scanning electron microscopy (SEM), (EDAX) for structural, thermal and morphological respectively. It is observed that the particle size of spherical sampleis 32.5 nm. 展开更多
关键词 Magnetic Nanoparticle CORE-SHELL TG-DTA SEM TEM
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部