期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Aspect Level Songs Rating Based Upon Reviews in English
1
作者 muhammad aasim qureshi muhammad Asif +4 位作者 Saira Anwar Umar Shaukat Atta-ur-Rahman muhammad Adnan Khan Amir Mosavi 《Computers, Materials & Continua》 SCIE EI 2023年第2期2589-2605,共17页
With the advancements in internet facilities,people are more inclined towards the use of online services.The service providers shelve their items for e-users.These users post their feedbacks,reviews,ratings,etc.after ... With the advancements in internet facilities,people are more inclined towards the use of online services.The service providers shelve their items for e-users.These users post their feedbacks,reviews,ratings,etc.after the use of the item.The enormous increase in these reviews has raised the need for an automated system to analyze these reviews to rate these items.Sentiment Analysis(SA)is a technique that performs such decision analysis.This research targets the ranking and rating through sentiment analysis of these reviews,on different aspects.As a case study,Songs are opted to design and test the decision model.Different aspects of songs namely music,lyrics,song,voice and video are picked.For the reason,reviews of 20 songs are scraped from YouTube,pre-processed and formed a dataset.Different machine learning algorithms—Naïve Bayes(NB),Gradient Boost Tree,Logistic Regression LR,K-Nearest Neighbors(KNN)and Artificial Neural Network(ANN)are applied.ANN performed the best with 74.99%accuracy.Results are validated using K-Fold. 展开更多
关键词 Machine learning natural language processing songs reviews:sentiment analysis songs rating aspect level sentiment analysis reviews analysis text classification MUSIC
下载PDF
NewBee: Context-Free Grammar (CFG) of a New Programming Language for Novice Programmers
2
作者 muhammad aasim qureshi muhammad Asif Saira Anwar 《Intelligent Automation & Soft Computing》 SCIE 2023年第7期439-453,共15页
Learning programming and using programming languages are the essential aspects of computer science education.Students use programming languages to write their programs.These computer programs(students or practitioners... Learning programming and using programming languages are the essential aspects of computer science education.Students use programming languages to write their programs.These computer programs(students or practitioners written)make computers artificially intelligent and perform the tasks needed by the users.Without these programs,the computer may be visioned as a pointless machine.As the premise of writing programs is situated with specific programming languages,enormous efforts have been made to develop and create programming languages.However,each program-ming language is domain-specific and has its nuances,syntax and seman-tics,with specific pros and cons.These language-specific details,including syntax and semantics,are significant hurdles for novice programmers.Also,the instructors of introductory programming courses find these language specificities as the biggest hurdle in students learning,where more focus is on syntax than logic development and actual implementation of the program.Considering the conceptual difficulty of programming languages and novice students’struggles with the language syntax,this paper describes the design and development of a Context-Free Grammar(CFG)of a programming language for the novice,newcomers and students who do not have computer science as their major.Due to its syntax proximity to daily conversations,this paper hypothesizes that this language will be easy to use and understand by novice programmers.This paper systematically designed the language by identifying themes from various existing programming languages(e.g.,C,Python).Additionally,this paper surveyed computer science experts from industry and academia,where experts self-reported their satisfaction with the newly designed language.The results indicate that 93%of the experts reported satisfaction with the NewBee for novice,newcomer and non-Computer Sci-ence(CS)major students. 展开更多
关键词 Programming language formal language computer language language grammar simple syntax programming language novice programmer
下载PDF
A Novel Auto-Annotation Technique for Aspect Level Sentiment Analysis 被引量:1
3
作者 muhammad aasim qureshi muhammad Asif +4 位作者 Mohd Fadzil Hassan Ghulam Mustafa muhammad Khurram Ehsan aasim Ali Unaza Sajid 《Computers, Materials & Continua》 SCIE EI 2022年第3期4987-5004,共18页
In machine learning,sentiment analysis is a technique to find and analyze the sentiments hidden in the text.For sentiment analysis,annotated data is a basic requirement.Generally,this data is manually annotated.Manual... In machine learning,sentiment analysis is a technique to find and analyze the sentiments hidden in the text.For sentiment analysis,annotated data is a basic requirement.Generally,this data is manually annotated.Manual annotation is time consuming,costly and laborious process.To overcome these resource constraints this research has proposed a fully automated annotation technique for aspect level sentiment analysis.Dataset is created from the reviews of ten most popular songs on YouTube.Reviews of five aspects—voice,video,music,lyrics and song,are extracted.An N-Gram based technique is proposed.Complete dataset consists of 369436 reviews that took 173.53 s to annotate using the proposed technique while this dataset might have taken approximately 2.07 million seconds(575 h)if it was annotated manually.For the validation of the proposed technique,a sub-dataset—Voice,is annotated manually as well as with the proposed technique.Cohen’s Kappa statistics is used to evaluate the degree of agreement between the two annotations.The high Kappa value(i.e.,0.9571%)shows the high level of agreement between the two.This validates that the quality of annotation of the proposed technique is as good as manual annotation even with far less computational cost.This research also contributes in consolidating the guidelines for the manual annotation process. 展开更多
关键词 Machine learning natural language processing ANNOTATION semi-annotated technique reviews annotation text annotation corpus annotation
下载PDF
Context and Machine Learning Based Trust Management Framework for Internet of Vehicles 被引量:1
4
作者 Abdul Rehman Mohd Fadzil Hassan +4 位作者 Yew Kwang Hooi muhammad aasim qureshi Tran Duc Chung Rehan Akbar Sohail Safdar 《Computers, Materials & Continua》 SCIE EI 2021年第9期4125-4142,共18页
Trust is one of the core components of any ad hoc network security system.Trust management(TM)has always been a challenging issue in a vehicular network.One such developing network is the Internet of vehicles(IoV),whi... Trust is one of the core components of any ad hoc network security system.Trust management(TM)has always been a challenging issue in a vehicular network.One such developing network is the Internet of vehicles(IoV),which is expected to be an essential part of smart cities.IoV originated from the merger of Vehicular ad hoc networks(VANET)and the Internet of things(IoT).Security is one of the main barriers in the on-road IoV implementation.Existing security standards are insufficient to meet the extremely dynamic and rapidly changing IoV requirements.Trust plays a vital role in ensuring security,especially during vehicle to vehicle communication.Vehicular networks,having a unique nature among other wireless ad hoc networks,require dedicated efforts to develop trust protocols.Current TM schemes are inflexible and static.Predefined scenarios and limited parameters are the basis for existing TM models that are not suitable for vehicle networks.The vehicular network requires agile and adaptive solutions to ensure security,especially when it comes to critical messages.The vehicle network’s wireless nature increases its attack surface and exposes the network to numerous security threats.Moreover,internet involvement makes it more vulnerable to cyberattacks.The proposed TM framework is based on context-based cognition and machine learning to be best suited to IoV dynamics.Machine learning is the best solution to utilize the big data produced by vehicle sensors.To handle the uncertainty Bayesian machine learning statistical model is used.The proposed framework can adapt scenarios dynamically and infer using the maximum possible parameter available.The results indicated better performance than existing TM methods.Furthermore,for future work,a high-level machine learning model is proposed. 展开更多
关键词 Internet of vehicles(IoV) trust management(TM) vehicular ad hoc network(VANET) machine learning context awareness bayesian learning
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部