期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Dynamic Hand Gesture Recognition Using 3D-CNN and LSTM Networks 被引量:3
1
作者 muneeb ur rehman Fawad Ahmed +4 位作者 Muhammad Attique Khan Usman Tariq Faisal Abdulaziz Alfouzan Nouf M.Alzahrani Jawad Ahmad 《Computers, Materials & Continua》 SCIE EI 2022年第3期4675-4690,共16页
Recognition of dynamic hand gestures in real-time is a difficult task because the system can never know when or from where the gesture starts and ends in a video stream.Many researchers have been working on visionbase... Recognition of dynamic hand gestures in real-time is a difficult task because the system can never know when or from where the gesture starts and ends in a video stream.Many researchers have been working on visionbased gesture recognition due to its various applications.This paper proposes a deep learning architecture based on the combination of a 3D Convolutional Neural Network(3D-CNN)and a Long Short-Term Memory(LSTM)network.The proposed architecture extracts spatial-temporal information from video sequences input while avoiding extensive computation.The 3D-CNN is used for the extraction of spectral and spatial features which are then given to the LSTM network through which classification is carried out.The proposed model is a light-weight architecture with only 3.7 million training parameters.The model has been evaluated on 15 classes from the 20BN-jester dataset available publicly.The model was trained on 2000 video-clips per class which were separated into 80%training and 20%validation sets.An accuracy of 99%and 97%was achieved on training and testing data,respectively.We further show that the combination of 3D-CNN with LSTM gives superior results as compared to MobileNetv2+LSTM. 展开更多
关键词 Convolutional neural networks 3D-CNN LSTM SPATIOTEMPORAL jester real-time hand gesture recognition
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部